Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling.
Congenital heart diseases (CHD) occur in nearly 1% of all live births and are the major cause of infant mortality and morbidity. Although an improved understanding of the genetic causes of CHD would provide insight into the underlying pathobiology, the genetic etiology of most CHD remains unknown. Here we show that mutations in the gene encoding the transcription factor GATA6 cause CHD characteristic of a severe form of cardiac outflow tract (OFT) defect, namely persistent truncus arteriosus (PTA). ⋯ Genes encoding the neurovascular guiding molecule semaphorin 3C (SEMA3C) and its receptor plexin A2 (PLXNA2) appear to be regulated directly by GATA6, and both GATA6 mutant proteins failed to transactivate these genes. Transgenic analysis further suggests that, in the developing heart, the expression of SEMA3C in the OFT/subpulmonary myocardium and PLXNA2 in the cardiac neural crest contributing to the OFT is dependent on GATA transcription factors. Together, our data implicate mutations in GATA6 as genetic causes of CHD involving OFT development, as a result of the disruption of the direct regulation of semaphorin-plexin signaling.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide.
Lenalidomide is the first karyotype-selective therapeutic approved for the treatment of myelodysplastic syndromes (MDS) owing to high rates of erythroid and cytogenetic response in patients with chromosome 5q deletion [del(5q)]. Although haploinsufficiency for the RPS14 gene and others encoded within the common deleted region (CDR) have been implicated in the pathogenesis of the del(5q) phenotype, the molecular basis of the karyotype specificity of lenalidomide remains unexplained. We focused our analysis on possible haplodeficient enzymatic targets encoded within the CDR that play key roles in cell-cycle regulation. ⋯ Treatment of del(5q) AML cells with lenalidomide induced G(2) arrest and apoptosis, whereas there was no effect in nondel(5q) AML cells. Small interfering RNA (shRNA) suppression of Cdc25C and PP2Acalpha gene expression recapitulated del(5q) susceptibility to lenalidomide with induction of G(2) arrest and apoptosis in both U937 and primary nondel(5q) MDS cells. These data establish a role for allelic haplodeficiency of the lenalidomide inhibitable Cdc25C and PP2Acalpha phosphatases in the selective drug sensitivity of del(5q) MDS.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia.
Pediatric de novo acute myeloid leukemia (AML) is an aggressive malignancy with current therapy resulting in cure rates of only 60%. To better understand the cause of the marked heterogeneity in therapeutic response and to identify new prognostic markers and therapeutic targets a comprehensive list of the genetic mutations that underlie the pathogenesis of AML is needed. To approach this goal, we examined diagnostic leukemic samples from a cohort of 111 children with de novo AML using single-nucleotide-polymorphism microarrays and candidate gene resequencing. ⋯ The only exception to the presence of few mutations was acute megakaryocytic leukemias, with the majority of these leukemias being characterized by a high number of copy-number alterations but rare point mutations. Despite the low overall number of lesions across the patient cohort, novel recurring regions of genetic alteration were identified that harbor known, and potential new cancer genes. These data reflect a remarkably low burden of genomic alterations within pediatric de novo AML, which is in stark contrast to most other human malignancies.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation.
Staphylococcus aureus is a major cause of community-acquired and nosocomial infections including the life-threatening conditions endocarditis, necrotizing pneumonia, necrotizing fasciitis, and septicemia. Toll-like receptor (TLR)-2, a membrane-bound microbial sensor, detects staphylococcal components, but macrophages lacking TLR2 or both TLR2 and TLR4 remain S. aureus responsive, suggesting that an alternative microbial recognition receptor might be involved. The cytoplasmic sensor nucleotide-binding oligomerization domain containing (NOD) 2/caspase recruitment domain (CARD) 15 detects muramyl dipeptide from bacterial peptidoglycans and mediates cytokine responses to S. aureus in vitro, but the physiological significance of these observations is not well defined. ⋯ NOD2-dependent recognition of S. aureus and muramyl dipeptide is facilitated by alpha-toxin (alpha-hemolysin), a pore-forming toxin and virulence factor of the pathogen. The action of NOD2 is dependent on IL-1beta-amplified production of IL-6, which promotes rapid bacterial killing by neutrophils. These results significantly broaden the physiological importance of NOD2 in innate immunity from the recognition of bacteria that primarily enter the cytoplasm to the detection of bacteria that typically reside extracellularly and demonstrate that this microbial sensor contributes to the discrimination between commensal bacteria and bacterial pathogens that elaborate pore-forming toxins.
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2009
Leptin derived from adipocytes in injured peripheral nerves facilitates development of neuropathic pain via macrophage stimulation.
Nerve injury may result in neuropathic pain, characterized by allodynia and hyperalgesia. Accumulating evidence suggests the existence of a molecular substrate for neuropathic pain produced by neurons, glia, and immune cells. Here, we show that leptin, an adipokine exclusively produced by adipocytes, is critical for the development of tactile allodynia through macrophage activation in mice with partial sciatic nerve ligation (PSL). ⋯ Administration of peritoneal macrophages treated with leptin to the injured SCN reversed the failure of ob/ob mice to develop PSL-induced tactile allodynia. We suggest that leptin induces recruited macrophages to produce pronociceptive mediators for the development of tactile allodynia. This report shows that adipocytes associated with primary afferent neurons may be involved in the development of neuropathic pain through adipokine secretion.