Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Jan 2014
House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.
Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. ⋯ L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.
-
Proc. Natl. Acad. Sci. U.S.A. · Jan 2014
Ohnologs are overrepresented in pathogenic copy number mutations.
A number of rare copy number variants (CNVs), including both deletions and duplications, have been associated with developmental disorders, including schizophrenia, autism, intellectual disability, and epilepsy. Pathogenicity may derive from dosage sensitivity of one or more genes contained within the CNV locus. To understand pathophysiology, the specific disease-causing gene(s) within each CNV need to be identified. ⋯ We found that ohnologs are significantly overrepresented in genes mapping to pathogenic CNVs, irrespective of how CNVs were identified, with over 90% containing an ohnolog, compared with control CNVs >100 kb, where only about 30% contained an ohnolog. In some CNVs, such as del15p11.2 (CYFIP1) and dup/del16p13.11 (NDE1), the most plausible prior candidate gene was also an ohnolog, as were the genes VIPR2 and NRXN1, each found in short CNVs containing no other genes. Our results support the hypothesis that ohnologs represent critical dosage-sensitive elements of the genome, possibly responsible for some of the deleterious phenotypes observed for pathogenic CNVs and as such are readily identifiable candidate genes for further study.