Transactions of the American Ophthalmological Society
-
Trans Am Ophthalmol Soc · Jan 1998
Orbital blow-out fractures: correlation of preoperative computed tomography and postoperative ocular motility.
Although the management of orbital blow-out fractures was controversial for many years, refined imaging with computed tomography (CT) helped to narrow the poles of the debate. Many orbital surgeons currently recommend repair if fracture size portends late enophthalmos, or if diplopia has not substantially resolved within 2 weeks of the injury. While volumetric considerations have been generally well-served by this approach, ocular motility outcomes have been less than ideal. In one series, almost 50% of patients had residual diplopia 6 months after surgery. A fine network of fibrous septa that functionally unites the periosteum of the orbital floor, the inferior fibrofatty tissues, and the sheaths of the inferior rectus and oblique muscles was demonstrated by Koornneef. Entrapment between bone fragments of any of the components of this anatomic unit can limit ocular motility. Based on the pathogenesis of blow-out fractures, in which the fibrofatty-muscular complex is driven to varying degrees between bone fragments, some measure of soft tissue damage might be anticipated. Subsequent intrinsic fibrosis and contraction can tether globe movement, despite complete reduction of herniated orbital tissue from the fracture site. We postulated that the extent of this soft tissue damage might be estimated from preoperative imaging studies. ⋯ When the CT-depicted relationship between bone fragments and soft tissues is considered, a wide spectrum of injuries is subsumed under the rubric of blow-out fractures. In general, greater degrees of soft tissue incarceration or displacement, with presumably greater intrinsic damage and subsequent fibrosis, appear to result in poorer motility outcomes. Although this retrospective study does not conclusively prove its benefit, an urgent surgical approach to selected injuries should be considered.