Journal of neurosurgery
-
Journal of neurosurgery · May 2018
Semi-automated application for estimating subthalamic nucleus boundaries and optimal target selection for deep brain stimulation implantation surgery.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become standard care for the surgical treatment of Parkinson's disease (PD). Reliable interpretation of microelectrode recording (MER) data, used to guide DBS implantation surgery, requires expert electrophysiological evaluation. Recent efforts have endeavored to use electrophysiological signals for automatic detection of relevant brain structures and optimal implant target location.The authors conducted an observational case-control study to evaluate a software package implemented on an electrophysiological recording system to provide online objective estimates for entry into and exit from the STN. In addition, they evaluated the accuracy of the software in selecting electrode track and depth for DBS implantation into STN, which relied on detecting changes in spectrum activity. ⋯ The results of this study demonstrate that the software can reliably and accurately estimate entry into and exit from the STN and select the track corresponding to ultimate DBS implantation.
-
Journal of neurosurgery · May 2018
Association of copeptin, a surrogate marker of arginine vasopressin, with cerebral vasospasm and delayed ischemic neurologic deficit after aneurysmal subarachnoid hemorrhage.
Delayed ischemic neurological deficit (DIND) is a leading cause of mortality and morbidity after aneurysmal subarachnoid hemorrhage (aSAH). Arginine vasopressin (AVP) is a hormone released by the posterior pituitary. It is known to cause cerebral vasoconstriction and has been implicated in hyponatremia secondary to the syndrome of inappropriate antidiuretic hormone secretion. Direct measurement of AVP is limited by its short half-life. Copeptin, a cleavage product of the AVP precursor protein, was therefore used as a surrogate marker for AVP. This study aimed to investigate the temporal relationship between changes in copeptin concentrations and episodes of DIND and hyponatremia. ⋯ Increased AVP may be the unifying factor explaining the co-occurrence of hyponatremia and DIND. Future studies are indicated to investigate this relationship and the therapeutic utility of AVP antagonists in the clinical setting.
-
Journal of neurosurgery · May 2018
A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab.
OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. ⋯ These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for chordoma.