Journal of neurosurgery
-
Journal of neurosurgery · Oct 2019
Prevention of neointimal hyperplasia induced by an endovascular stent via intravenous infusion of mesenchymal stem cells.
In-stent restenosis after percutaneous transluminal angioplasty and stenting (PTAS) due to neointimal hyperplasia is a potential cause of clinical complications, including repeated revascularization and ischemic events. Neointimal hyperplasia induced by an inflammatory response to the stent strut may be a possible mechanism of in-stent restenosis. Intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) has been reported to show therapeutic efficacy for cerebral stroke, presumably by an antiinflammatory effect. This study aimed to determine whether MSCs can reduce or prevent neointimal hyperplasia induced by an endovascular stent. ⋯ Intravenous infusion of MSCs inhibited the inflammatory reaction to an implanted stent strut, and prevented progressive neointimal hyperplasia in the stented CCA and SCA in a porcine model. Thus, MSC treatment could attenuate the recurrence of cerebral ischemic events after stenting.
-
Journal of neurosurgery · Oct 2019
Surgical outcomes after reoperation for recurrent non-skull base meningiomas.
Recurrent meningiomas are primarily managed with radiation therapy or repeat resection. Surgical morbidity after reoperation for recurrent meningiomas is poorly understood. Thus, the objective of this study was to report surgical outcomes after reoperation for recurrent non-skull base meningiomas. ⋯ Reoperation for recurrent supratentorial non-skull base meningioma is associated with a high rate of complications. Patients with cognitive changes and tumors that overlap the middle third of the sagittal plane are at increased risk of complications. Nevertheless, excellent long-term survival can be achieved without perioperative mortality.
-
Journal of neurosurgery · Oct 2019
Circumferential wall enhancement in evolving intracranial aneurysms on magnetic resonance vessel wall imaging.
Recent MR vessel wall imaging studies have indicated intracranial aneurysms in the active state could show circumferential enhancement along the aneurysm wall (CEAW). While ruptured aneurysms frequently show CEAW, CEAW in unruptured aneurysms at the evolving state (i.e., growing or symptomatic) has not been studied in detail. The authors quantitatively assessed the degree of CEAW in evolving unruptured aneurysms by comparing it separately to that in stable unruptured and ruptured aneurysms. ⋯ The CEAW in evolving aneurysms was higher than those in stable aneurysms, and lower than those in ruptured aneurysms. The degree of CEAW may indicate the process leading to rupture of intracranial aneurysms, which can be useful additional information to determine an indication for surgical treatment of unruptured aneurysms.
-
Journal of neurosurgery · Oct 2019
Changes in the gray and white matter of patients with ischemic-edematous insults after traumatic brain injury.
Gray matter (GM) and white matter (WM) are vulnerable to ischemic-edematous insults after traumatic brain injury (TBI). The extent of secondary insult after brain injury is quantifiable using quantitative CT analysis. One conventional quantitative CT measure, the gray-white matter ratio (GWR), and a more recently proposed densitometric analysis are used to assess the extent of these insults. However, the prognostic capacity of the GWR in patients with TBI has not yet been validated. This study aims to test the prognostic value of the GWR and evaluate the alternative parameters derived from the densitometric analysis acquired during the acute phase of TBI. In addition, the prognostic ability of the conventional TBI prognostic models (i.e., IMPACT [International Mission for Prognosis and Analysis of Clinical Trials in TBI] and CRASH [Corticosteroid Randomisation After Significant Head Injury] models) were compared to that of the quantitative CT measures. ⋯ Both deep GM and WM are susceptible to ischemic-edematous insults during the early phase of TBI. The extent of the secondary injury was better evaluated by analyzing the normality of the deep GM and WM rather than by calculating the GWR.
-
Journal of neurosurgery · Oct 2019
Analysis of high-frequency PbtO2 measures in traumatic brain injury: insights into the treatment threshold.
Brain tissue hypoxia is common after traumatic brain injury (TBI). Technology now exists that can detect brain hypoxia and guide corrective therapy. Current guidelines for the management of severe TBI recommend maintaining partial pressure of brain tissue oxygen (PbtO2) > 15-20 mm Hg; however, uncertainty persists as to the optimal treatment threshold. The object of this study was to better inform the relationship between PbtO2 values and outcome for patients with TBI. ⋯ This analysis of high-frequency physiological data substantially informs the relationship between PbtO2 values and outcome. The results suggest a therapeutic window for PbtO2 in TBI patients along with minimum and preferred PbtO2 treatment thresholds, which may be examined in future studies. Traditional treatment thresholds that have the strongest association with outcome may not be optimal.