Annals of the New York Academy of Sciences
-
Ann. N. Y. Acad. Sci. · May 2015
Hypertonic saline for the management of raised intracranial pressure after severe traumatic brain injury.
Hyperosmolar agents are commonly used as an initial treatment for the management of raised intracranial pressure (ICP) after severe traumatic brain injury (TBI). They have an excellent adverse-effect profile compared to other therapies, such as hyperventilation and barbiturates, which carry the risk of reducing cerebral perfusion. The hyperosmolar agent mannitol has been used for several decades to reduce raised ICP, and there is accumulating evidence from pilot studies suggesting beneficial effects of hypertonic saline (HTS) for similar purposes. ⋯ To date, no large clinical trial has been performed to directly compare the two agents. The best current evidence suggests that mannitol is effective in reducing ICP in the management of traumatic intracranial hypertension and carries mortality benefit compared to barbiturates. Current evidence regarding the use of HTS in severe TBI is limited to smaller studies, which illustrate a benefit in ICP reduction and perhaps mortality.
-
Ann. N. Y. Acad. Sci. · May 2015
A conceptual approach to managing severe traumatic brain injury in a time of uncertainty.
Current controversies in the literature suggest that a reassessment of the current management of severe traumatic brain injury (sTBI) is necessary. This article presents a conceptual framework toward individualizing sTBI treatment with respect to targeting thresholds and strategies on the basis of known physiologic processes and available monitors. Intracranial pressure (ICP) is modeled as an epiphenomenon of cerebral compliance and herniation tendency, as well as cerebral ischemia. ⋯ Similarly, by collecting and trending clinical, imaging, and monitoring data on the status of cerebral blood flow, the balance of oxygen consumption and delivery, and the status of cerebral static pressure autoregulation, and analyzing them with respect to measured parameters, such as blood pressure, ICP, and cerebral perfusion pressure, one can attempt to fine-tune these variables as well. Such individualization of management optimizes the possibility of successfully treating demonstrated pathophysiological processes while avoiding unnecessary interventions and treatment toxicity. Monitor values must not be seen as targets but rather as indicators of targetable pathology.
-
Ann. N. Y. Acad. Sci. · May 2015
ReviewKetamine as a promising prototype for a new generation of rapid-acting antidepressants.
The discovery of ketamine's rapid and robust antidepressant effects opened a window into a new generation of antidepressants. Multiple controlled trials and open-label studies have demonstrated these effects across a variety of patient populations known to often achieve little to no response from traditional antidepressants. ⋯ This review summarizes the clinical effects of ketamine and its neurobiological underpinnings and mechanisms of action, which may provide insight into the neurobiology of depression, relevant biomarkers, and treatment targets. Moreover, we offer suggestions for future research that may continue to advance the field forward and ultimately improve the psychopharmacologic interventions available for those individuals struggling with depressive and trauma-related disorders.
-
Ann. N. Y. Acad. Sci. · May 2015
What is wrong with the tenets underpinning current management of severe traumatic brain injury?
The results of a recent randomized controlled trial comparing intracranial pressure (ICP) monitor-based treatment of severe traumatic brain injury (sTBI) to management without ICP monitoring prompt this skeptical reconsideration of the scientific foundation underlying current sTBI management. Much of current practice arises from research performed under conditions that are no longer relevant today. The definition of an episode of intracranial hypertension is incomplete, and the application of a fixed, universal ICP treatment threshold is poorly founded. ⋯ Similar concerns also apply to manipulation of cerebral perfusion with respect to maintaining universal thresholds for contrived variables rather than tailoring treatment to monitored processes. As such, there is a failure to either optimize management approaches or minimize associated treatment risks for individual sTBI patients. The clinical and research TBI communities need to reassess many of the sTBI management concepts that are currently considered well established.