Annals of the New York Academy of Sciences
-
Ann. N. Y. Acad. Sci. · Dec 2017
ReviewLooking beyond the intervertebral disc: the need for behavioral assays in models of discogenic pain.
Orthopedic research into chronic discogenic back pain has commonly focused on aging- and degeneration-related changes in intervertebral disc structure, biomechanics, and biology. However, the primary spine-related reason for physician office visits is pain. The ambiguous nature of the human condition of discogenic low back pain motivates the use of animal models to better understand the pathophysiology. ⋯ Looking beyond the intervertebral disc, we describe the different ways to classify pain in human patients and animal models. We describe several behavioral assays that can be used in rodent models to augment disc degeneration measurements and characterize different types of pain. We review rodent models of discogenic pain that employed behavioral pain assays and highlight a need to better integrate neuroscience and orthopedic science methods to extend current understanding of the complex and multifactorial pathophysiology of discogenic back pain.
-
Ann. N. Y. Acad. Sci. · Nov 2017
ReviewRecent developments on intramedullary nailing: a biomechanical perspective.
Combining contributions from engineering and medicine, we highlight the biomechanical turning points in the historical evolution of the intramedullary nailing stabilization technique and discuss the recent innovations concerning increase in bone-implant system stability. Following the earliest attempts, where stabilization of long bone fractures was purely based on intuition, intramedullary nailing evolved from allowing alignment and translational control through press-fit fixation to current clinical widespread acceptance marked by the mechanical linkage between nail and bone with interlocking screws that allow alignment, translation, rotation, and length control. ⋯ Intramedullary nail improvements will most likely benefit from merging mechanics and fracture-healing biology by combining surface engineering with sensor tools associated with the innovative progress in wireless technology and with bone-healing biological active agents. Future research should aim at better understanding the ideal mechanobiological environment for each stage of fracture healing in order to allow for intramedullary nail design that satisfies such requirements.
-
Ann. N. Y. Acad. Sci. · Jan 2017
ReviewResistance diagnosis and the changing economics of antibiotic discovery.
Point-of-care diagnostics that can determine an infection's antibiotic sensitivity increase the profitability of new antibiotics that enjoy patent protection, even when such diagnostics reduce the quantity of antibiotics sold. Advances in the science and technology underpinning rapid resistance diagnostics can therefore be expected to spur efforts to discover and develop new antibiotics, especially those with a narrow spectrum of activity that would otherwise fail to find a market.
-
Ann. N. Y. Acad. Sci. · Jan 2017
Comparative StudyMachine learning approaches to personalize early prediction of asthma exacerbations.
Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. ⋯ Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions.
-
Ann. N. Y. Acad. Sci. · Jan 2017
ReviewA brief primer on genomic epidemiology: lessons learned from Mycobacterium tuberculosis.
Genomics is now firmly established as a technique for the investigation and reconstruction of communicable disease outbreaks, with many genomic epidemiology studies focusing on revealing transmission routes of Mycobacterium tuberculosis. In this primer, we introduce the basic techniques underlying transmission inference from genomic data, using illustrative examples from M. tuberculosis and other pathogens routinely sequenced by public health agencies. We describe the laboratory and epidemiological scenarios under which genomics may or may not be used, provide an introduction to sequencing technologies and bioinformatics approaches to identifying transmission-informative variation and resistance-associated mutations, and discuss how variation must be considered in the light of available clinical and epidemiological information to infer transmission.