Pain
-
The purpose of this study was to compare the amplitude of the flexion reflex of the biceps femoris muscle (BF) with the intensity of the painful sensation elicited by a nociceptive stimulation resulting from application of constant-current either on the sural nerve or on the skin in its distal receptive field. Experiments were carried out on 15 normal volunteers. It was observed that: (1) Stimulation of the sural nerve (either on or through the skin) elicits two different reflex responses in the BF: the first (RII) is of short latency, low threshold and corresponds to a tactile reflex. ⋯ This was supported by the results obtained during a selective ischemic block of the largest diameter fibers in the sural nerve, when a 10 mA stimulation was applied to the nerve. In this case, a decrease of the RII reflex was observed in BF, together with an increase of both RIII and pain sensation. Functional implications of these results are discussed.
-
The radicular pain of sciatica was ascribed by Mixter and Barr to compression of the spinal root by a herniated intervertebral disc. It was assumed that root compression produced prolonged firing in the injured sensory fibers and led to pain perceived in the peripheral distribution of those fibers. This concept has been challenged on the basis that acute peripheral nerve compression neuropathies are usually painless. ⋯ Chronic injury of dorsal roots or sural nerve produces a marked increase in mechanical sensitivity; several minutes of repetitive firing may follow acute compression of such chronically injured sites. Such prolonged responses could be evoked repeatedly in a population of both rapidly and slowly conducting fibers. Since mechanical compression of either the dorsal root ganglion or of chronically injured roots can induce prolonged repetitive firing in sensory axons, we conclude that radicular pain is due to activity in the fibers appropriate to the area of perceived pain.