Pain
-
Pain in early life can enhance the response to subsequent injury, but effects are influenced by both the nature and timing of neonatal injury. Using plantar hindpaw incision, we investigated how postnatal age influences the response to repeat surgical injury two weeks later. The degree and time course of behavioural changes in mechanical withdrawal threshold were measured, and injury-related hyperalgesia was further quantified by flexion reflex electromyographic responses to suprathreshold mechanical stimuli 24 h following incision. ⋯ Repeat peri-operative, but not a single pre-operative sciatic block, prevented the enhanced response to repeat incision two weeks later. Our results show that the first postnatal week represents a critical period when incision increases hyperalgesia following repeat surgery two weeks later, and effects are initiated by peripheral afferent activity. This has potential therapeutic implications for the type and duration of peri-operative analgesia used for neonatal surgery.
-
Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer, but it causes acute peripheral neuropathy (acral paresthesias triggered by exposure to cold) and chronic neuropathy (abnormal of sensory and motor dysfunction). Oxaliplatin is metabolized to oxalate and dichloro(1,2-diaminocyclohexane)platinum (Pt(dach)Cl(2)). Although the chelating of Ca(2+) with oxalate eliminated from oxaliplatin is thought as one of the reasons for the neuropathy, there is little behavioral evidence. ⋯ The pre-administration of calcium or magnesium (0.5mmol/kg, i.v.) before oxaliplatin or oxalate prevented the cold hyperalgesia but not mechanical allodynia. However, the treatment with calcium or magnesium after the development of neuropathy could not attenuate the cold hyperalgesia or mechanical allodynia. These findings suggest the involvement of oxalate in oxaliplatin-induced cold hyperalgesia but not mechanical allodynia, and usefulness of prophylactic treatments with calcium and magnesium on the acute peripheral neuropathy.
-
Review Meta Analysis
Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment.
Regard of functional pharmacogenetic polymorphisms may further the success of pain therapy by adopting individualized approaches. The mu-opioid receptor gene (OPRM1) 118A>G polymorphism is a promising candidate for both opioid effects and pain because of both biological reasonability and apparent experimental and clinical evidence. We analyzed its importance for pain therapy using a meta-analytic approach to studies relating it to opioid pain therapy. ⋯ Only weak evidence of an association with less nausea (effect size, Cohen's d=-0.21, p=0.037) and of increased opioid dosage requirements (d=0.56, p=0.018) in homozygous carriers of the G allele was obtained. This indicates that despite initially promising results, available evidence of the clinical relevance of the OPRM1 118A>G polymorphism does not withhold a meta-analysis. This discourages basing personalized therapeutic concepts of pain therapy on OPRM1 118A>G genotyping at the present state of evidence.
-
Randomized Controlled Trial
Endogenous opioids may buffer effects of anger arousal on sensitivity to subsequent pain.
Evidence suggests that anger and pain are related, yet it is not clear by what mechanisms anger may influence pain. We have proposed that effects of anger states and traits on pain sensitivity are partly opioid mediated. In this study, we test the extent to which analgesic effects of acute anger arousal on subsequent pain sensitivity are opioid mediated by subjecting healthy participants to anger-induction and pain either under opioid blockade (oral naltrexone) or placebo. ⋯ Results of ANOVAs show significant Drug Condition x Task Order interactions for sensory pain ratings (MPQ-Sensory) and angry and nervous affect during pain-induction, such that participants who underwent anger-induction prior to pain while under opioid blockade (naltrexone) reported more pain, and anger and nervousness than those who underwent the tasks in the same order, but did so on placebo. Results suggest that for people with intact opioid systems, acute anger arousal may trigger endogenous opioid release that reduces subsequent responsiveness to pain. Conversely, impaired endogenous opioid function, such as that found among some chronic pain patients, may leave certain people without optimal buffering from the otherwise hyperalgesic affects of anger arousal, and so may lead to greater pain and suffering following upsetting or angry events.