Pain
-
Comparative Study
Nerve growth factor selectively decreases activity-dependent conduction slowing in mechano-insensitive C-nociceptors.
Nerve growth factor (NGF) induces acute sensitization of nociceptive sensory endings and long-lasting hyperalgesia. NGF modulation of sodium channel expression might contribute to neurotrophin-induced hyperalgesia. Here, we investigated NGF-evoked changes of the activity-dependent slowing of conduction in porcine C-fibers. ⋯ Accordingly, the number of fibers with pronounced ADS decreased but more units with pronounced ADS were mechano-sensitive. Spontaneously active C-fibers were increased above the control level (1%) by NGF 8 μg (8%). The results demonstrate that NGF changes the functional axonal characteristics of mechano-insensitive C-fibers and enhances spontaneous activity thereby possibly contributing to hyperalgesia.
-
Comparative Study
Spatiotemporal and anatomical analyses of P2X receptor-mediated neuronal and glial processing of sensory signals in the rat dorsal horn.
Extracellularly released adenosine triphosphate (ATP) modulates sensory signaling in the spinal cord. We analyzed the spatiotemporal profiles of P2X receptor-mediated neuronal and glial processing of sensory signals and the distribution of P2X receptor subunits in the rat dorsal horn. Voltage imaging of spinal cord slices revealed that extracellularly applied ATP (5-500 μM), which was degraded to adenosine and acting on P1 receptors, inhibited depolarizing signals and that it also enhanced long-lasting slow depolarization, which was potentiated after ATP was washed out. ⋯ Astrocytes expressed the P2X(7) subunit. These findings indicate that extracellular ATP is degraded into adenosine and prevents overexcitation of the sensory system, and that ATP acts on pre- and partly on postsynaptic neuronal P2X receptors and enhances synaptic transmission, predominantly in the deep layer. Astrocytes are involved in sensitization of sensory network activity more importantly in the superficial than in the deep layer.
-
Comparative Study
Peripheral inflammation suppresses inward rectifying potassium currents of satellite glial cells in the trigeminal ganglia.
Previous studies indicate that silencing Kir4.1, a specific inward rectifying K(+) (Kir) channel subunit, in sensory ganglionic satellite glial cells (SGCs) induces behavioral hyperalgesia. However, the function of Kir4.1 channels in SGCs in vivo under pathophysiological conditions remains to be determined. The aim of the present study was to examine whether peripheral inflammation in anesthetized rats alters the SGC Kir4.1 current using in vivo patch clamp and immunohistochemical techniques. ⋯ Mean membrane potential in inflamed rats was more depolarized than in naïve rats. These results suggest that inflammation could suppress Kir4.1 currents of SGCs in the TRGs and that this impairment of glial potassium homeostasis in the TRGs contributes to trigeminal pain. Therefore, the Kir4.1 channel in SGCs may be a new molecular target for the treatment of trigeminal inflammatory pain.
-
Comparative Study
Sex differences in perceived pain are affected by an anxious brain.
Decades of research confirm that women have greater pain sensitivity than men. Women also show greater overall anxiety sensitivity than men. Given these differences, we hypothesized that sex differences in anxiety would explain sex differences in experienced pain and physiological responses to pain (at both spinal and cortical levels). ⋯ This means that stable predispositions to respond with heightened apprehension contribute to baseline pain sensitivity differences between the sexes. These results indicate that the modulatory effect of affect on pain-related brain processes may explain why men and women experience painful shocks so differently. In our study, the mediating role of anxiety on sex differences in pain was tested and confirmed using path analysis.
-
Comparative Study
Self-medication of a cannabinoid CB2 agonist in an animal model of neuropathic pain.
Drug self-administration methods were used to test the hypothesis that rats would self-medicate with a cannabinoid CB(2) agonist to attenuate a neuropathic pain state. Self-medication of the CB(2) agonist (R,S)-AM1241, but not vehicle, attenuated mechanical hypersensitivity produced by spared nerve injury. Switching rats from (R,S)-AM1241 to vehicle self-administration also decreased lever responding in an extinction paradigm. (R,S)-AM1241 self-administration did not alter paw withdrawal thresholds in sham-operated or naive animals. ⋯ Our results suggest that cannabinoid CB(2) agonists may be exploited to treat neuropathic pain with limited drug abuse liability and central nervous system side effects. These studies validate the use of drug self-administration methods for identifying nonpsychotropic analgesics possessing limited abuse potential. These methods offer potential to elucidate novel analgesics that suppress spontaneous neuropathic pain that is not measured by traditional assessments of evoked pain.