Pain
-
Neuropathic pain is a debilitating condition resulting from damage to sensory transmission pathways in the peripheral and central nervous system. A potential new way of treating chronic neuropathic pain is to target specific pain-processing neurons based on their expression of particular receptor molecules. We hypothesized that a toxin-neuropeptide conjugate would alter pain by first being taken up by specific receptors for the neuropeptide expressed on the neuronal cells. ⋯ The conjugate was next tested in a murine model of Taxol-induced neuropathic pain. An intracisternal injection of BoNT/A-LC:SP decreased thermal hyperalgesia as measured by the operant orofacial nociception assay. These findings indicate that conjugates of the light chain of botulinum toxin are extremely promising agents for use in suppressing neuronal activity for extended time periods, and that BoNT/A-LC:SP may be a useful agent for treating chronic pain.
-
One feature of neuropathic pain is a reduced spinal gamma-aminobutyric acid (GABA)-ergic inhibitory function. However, the mechanisms behind this attenuation remain to be elucidated. This study investigated the involvement of reactive oxygen species in the spinal GABA neuron loss and reduced GABA neuron excitability in spinal nerve ligation (SNL) model of neuropathic pain in mice. ⋯ Repeated antioxidant treatments significantly reduced the pain behaviors and prevented the reduction in EGFP+ GABA neurons. The response rate of the tonic firing GABA neurons recorded from SNL mice increased with antioxidant treatment, whereas no change was seen in those recorded from naïve mice, which suggested that oxidative stress impaired some spinal GABA neuron activity in the neuropathic pain condition. Together the data suggest that neuropathic pain, at least partially, is attributed to oxidative stress, which induces both a GABA neuron loss and dysfunction of surviving GABA neurons.
-
Peripherally acting opioids are potentially attractive drugs for the clinical management of certain chronic pain states due to the lack of centrally mediated adverse effects. However, it remains unclear whether tolerance develops to peripheral opioid analgesic effects under neuropathic pain conditions. We subjected rats to L5 spinal nerve ligation (SNL) and examined the analgesic effects of repetitive systemic and local administration of loperamide hydrochloride, a peripherally acting opioid agonist. ⋯ However, this drug effect significantly decreased in cells pretreated with loperamide (3 μM, 72 hours). Intriguingly, in loperamide-tolerant cells, the delta-opioid receptor antagonist naltrindole restored loperamide's inhibition of KCl-elicited [Ca(2+)]i increase. Our findings indicate that animals with neuropathic pain may develop acute tolerance to the antiallodynic effects of peripherally acting opioids after repetitive systemic and local drug administration.