Pain
-
Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. Although useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this study, we used multi-level mediation analysis to identify brain mediators of pain--regions in which trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across 4 levels) and pain. ⋯ Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain.
-
Patients with Alzheimer disease (AD) report pain less frequently than their cognitively intact peers. It has been hypothesized that pain processing is altered in AD. The aim of this study was to investigate agreement and reliability of 3 pain sensitivity tests and to examine pain threshold and tolerance in patients with AD. ⋯ No differences were found for the cold pressor test. The study demonstrated good replicability of the sensory testing data with comparable data variability, for both groups, which supports the use of these methods in studies of patients with mild to moderate AD. Contrary to previous studies, we observed a reduced pain tolerance in patients with mild to moderate AD, which suggests that the reduced report of pain cannot be explained by reduced processing of painful stimuli.
-
Burning mouth syndrome (BMS) is a debilitating, idiopathic chronic pain condition. For many BMS patients, burning oral pain begins in late morning and becomes more intense throughout the day, peaking by late afternoon or evening. We investigated brain gray matter volume (GMV) with voxel-based morphometry (VBM), white matter fractional anisotropy (FA) with diffusion tensor imaging (DTI), and functional connectivity in resting state functional MRI (rsfMRI) in a tightly screened, homogeneous sample of 9 female, postmenopausal/perimenopausal BMS patients and 9 matched healthy control subjects. ⋯ Patients had increased GMV and lower FA in the hippocampus (Hc), and decreased GMV in the medial prefrontal cortex (mPFC). rsfMRI revealed altered connectivity patterns in different states of pain/burning, with increased connectivity between mPFC (a node in the default mode network) and anterior cingulate cortex, occipital cortex, ventromedial PFC, and bilateral Hc/amygdala in the afternoon compared with the morning session. Furthermore, mPFC-Hc connectivity was higher in BMS patients than control subjects for the afternoon but not the morning session. mPFC-Hc connectivity was related to Beck depression inventory scores both between groups and between burning states within patients, suggesting that depression and anxiety partially explain pain-related brain dysfunction in BMS. Overall, we provide multiple lines of evidence supporting aberrant structure and function in the mPFC and Hc, and implicate a circuit involving the mPFC and Hc in regulating mood and depressive symptoms in BMS.
-
Mas-related G-protein-coupled receptor subtype C (mouse MrgC11 and rat rMrgC), expressed specifically in small-diameter primary sensory neurons, may constitute a novel pain inhibitory mechanism. We have shown previously that intrathecal administration of MrgC-selective agonists can strongly attenuate persistent pain in various animal models. However, the underlying mechanisms for MrgC agonist-induced analgesia remain elusive. ⋯ These findings indicate that activation of endogenously expressed MrgC receptors at central terminals of primary sensory fibers may decrease peripheral excitatory inputs onto SG neurons. Together, these results suggest potential cellular and molecular mechanisms that may contribute to intrathecal MrgC agonist-induced analgesia. Because MrgC shares substantial genetic homogeneity with human MrgX1, our findings may suggest a rationale for developing intrathecally delivered MrgX1 receptor agonists to treat pathological pain in humans and provide critical insight regarding potential mechanisms that may underlie its analgesic effects.
-
Patients' beliefs about the origin of their pain and their cognitive processing of pain-related information have both been shown to be associated with poorer prognosis in low back pain (LBP), but the relationship between specific beliefs and specific cognitive processes is not known. The aim of this study was to examine the relationship between diagnostic uncertainty and recall bias in 2 groups of chronic LBP patients, those who were certain about their diagnosis and those who believed that their pain was due to an undiagnosed problem. Patients (N=68) endorsed and subsequently recalled pain, illness, depression, and neutral stimuli. ⋯ Sensitivity analyses using grouping by diagnosis/explanation received supported these findings. Higher levels of depression and disability were found in the group with diagnostic uncertainty, but levels of pain intensity did not differ between the groups. Although the methodology does not provide information on causality, the results provide evidence for a relationship between diagnostic uncertainty and recall bias for negative health-related stimuli in chronic LBP patients.