Pain
-
The relevance of a phobia-based conceptualization of fear for individuals with chronic pain has been much debated in the literature. This study investigated whether patients with highly fearful chronic low back pain show distinct physiological reaction patterns compared with less fearful patients when anticipating aversive back pain-related movements. We used an idiosyncratic fear induction paradigm and collected 2 different measures of autonomic nervous system activation and muscle tension in the lower back. ⋯ According to Bradley and Lang defense cascade model, this response is typical of a fear reaction. Participants showing the psychophysiological pattern typical of fear also had elevated scores on some self-report measures of components of the fear-avoidance model, relative to participants showing the reaction pattern characteristic of attention. This study is the first to provide psychophysiological evidence for the fear-avoidance model of chronic pain.
-
Inflammatory hyperalgesia is a complex process that depends on the sensitization of primary nociceptive neurons triggered by proinflammatory mediators, such as interleukin 1β (IL-1β). Recently, the peripheral activation of caspase-1 (previously known as IL-1β-converting enzyme) was implicated in the induction of acute inflammatory pain by promoting the processing of IL-1β from its precursor form, pro-IL-1β. Caspase-1 activation in several systems requires the assembly of an intracellular molecular platform called an inflammasome. ⋯ The reduced hyperalgesia was accompanied by significant impairments in the levels of mature forms of IL-1β (p17) and caspase-1 (p20) compared to wild-type mice at the inflammatory site. Therefore, these results identified the inflammasome components NLRC4 and ASC as the molecular platform involved in the peripheral activation of caspase-1 and IL-1β maturation, which are responsible for the induction of acute inflammatory pain. In conclusion, our study provides new therapeutic targets for the control of acute inflammatory pain.
-
Sensory nerve fibers innervating the ocular anterior surface detect external stimuli producing innocuous and painful sensations. Protons are among the first mediators released by damaged cells during inflammation, tissue injury, or other chronic ophthalmic conditions. We studied whether acid-sensing ion channels (ASICs) are expressed in corneal sensory neurons and their roles in the response to moderate acidifications of the ocular surface and in pathologies producing ocular surface inflammation. ⋯ Our results show that, in addition to the established role of TRPV1, ASICs play a significant role in the detection of acidic insults at the ocular surface. The identification of ASICs in corneal neurons and their alterations during different diseases is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies.
-
Treatment of neuropathic pain is a clinical challenge likely because of the time-dependent changes in many neurotransmitter systems, growth factors, ionic channels, membrane receptors, transcription factors, and recruitment of different cell types. Conversely, an increasing number of reports have shown the ability of extended and regular physical exercise in alleviating neuropathic pain throughout a wide range of mechanisms. In this study, we investigate the effect of swim exercise on molecules associated with initiation and maintenance of nerve injury-induced neuropathic pain. ⋯ Finally, prolonged swim exercise reversed astrocyte and microglia hyperactivity in the dorsal horn after nerve lesion, which remained normalized after training cessation. Together, these results demonstrate that exercise therapy induces long-lasting analgesia through various mechanisms associated with the onset and advanced stages of neuropathy. Moreover, the data support further studies to clarify whether appropriate exercise intensity, volume, and duration can also cause long-lasting pain relief in patients with neuropathic pain.
-
Chronic widespread pain is a serious medical problem, yet the mechanisms of nociception and pain are poorly understood. Using a reserpine-induced pain model originally reported as a putative animal model for fibromyalgia, this study was undertaken to examine the following: (1) expression of several ion channels responsible for pain, mechanotransduction, and generation/propagation of action potentials in the dorsal root ganglion (DRG), (2) activities of peripheral nociceptive afferents, and (3) alterations in spinal microglial cells. A significant increase in mRNA expression of the acid-sensing ion channel (ASIC)-3 was detected in the DRG, and the behavioral mechanical hyperalgesia was significantly reversed by subcutaneous injection of APETx2, a selective blocker of ASIC3. ⋯ The activated microglia and behavioral hyperalgesia were significantly tranquilized by intraperitoneal injection of minocycline. These results suggest that the increase in ASIC3 in the DRG facilitated mechanical response of the remaining C-nociceptors and that activated spinal microglia may direct to intensify pain in this model. Pain may be further amplified by reserpine-induced dysfunction of the descending pain inhibitory system and by the decrease in peripheral drive to this system resulting from a reduced proportion of mechanoresponsive C-nociceptors.