Pain
-
Altered resting-state (RS) brain activity, as a measure of functional connectivity (FC), is commonly observed in chronic pain. Identifying a reliable signature pattern of altered RS activity for chronic pain could provide strong mechanistic insights and serve as a highly beneficial neuroimaging-based diagnostic tool. We collected and analyzed RS functional magnetic resonance imaging data from female patients with urologic chronic pelvic pain syndrome (N = 45) and matched healthy participants (N = 45) as part of an NIDDK-funded multicenter project (www.mappnetwork.org). ⋯ The left precuneus demonstrated decreased FC to several regions of pain processing, reward, and higher executive functioning within the prefrontal (orbitofrontal, anterior cingulate, ventromedial prefrontal) and parietal cortices (angular gyrus, superior and inferior parietal lobules). The altered PMC connectivity was associated with several phenotype measures, including pain and urologic symptom intensity, depression, anxiety, quality of relationships, and self-esteem levels in patients. Collectively, these findings indicate that in patients with urologic chronic pelvic pain syndrome, regions of the PMC are detached from the default mode network, whereas neurological processes of self-referential thought and introspection may be joined to pain and emotion regulatory processes.
-
Diffuse noxious inhibitory controls (DNICs) utilize descending inhibitory controls through poorly understood brain stem pathways. The human counterpart, conditioned pain modulation, is reduced in patients with neuropathy aligned with animal data showing a loss of descending inhibitory noradrenaline controls together with a gain of 5-HT3 receptor-mediated facilitations after neuropathy. We investigated the pharmacological basis of DNIC and whether it can be restored after neuropathy. ⋯ Diffuse noxious inhibitory controls are reduced after peripheral nerve injury illustrating the central impact of neuropathy, leading to an imbalance in descending excitations and inhibitions. Underlying noradrenergic mechanisms explain the relationship between conditioned pain modulation and the use of tapentadol and duloxetine (a serotonin, NRI) in patients. We suggest that pharmacological strategies through manipulation of the monoamine system could be used to enhance DNIC in patients by blocking descending facilitations with ondansetron or enhancing norepinephrine inhibitions, so possibly reducing chronic pain.