Pain
-
Glycine transporter 1 (GlyT1) plays a crucial role in regulating extracellular glycine concentrations and might thereby constitute a new drug target for the modulation of glycinergic inhibition in pain signaling. Consistent with this view, inhibition of GlyT1 has been found to induce antinociceptive effects in various animal pain models. We have shown previously that the lidocaine metabolite N-ethylglycine (EG) reduces GlyT1-dependent glycine uptake by functioning as an artificial substrate for this transporter. ⋯ Additionally, we found that EG reduced the increase in neuronal firing of wide-dynamic-range neurons caused by inflammatory pain induction. These findings suggest that systemically applied lidocaine exerts antihyperalgesic effects through its metabolite EG in vivo, by enhancing spinal inhibition of pain processing through GlyT1 modulation and subsequent increase of glycine concentrations at glycinergic inhibitory synapses. EG and other substrates of GlyT1, therefore, may be a useful therapeutic agent in chronic pain states involving spinal disinhibition.
-
A large number of analgesics have failed to prove superiority over placebo in randomized controlled trials (RCTs), and as this has been related to increasing placebo responses, there is currently an interest in specifying predictors of the placebo response. The literature on placebo mechanisms suggests that factors related to patients' expectations of treatment efficacy are pivotal for the placebo response. Also, general characteristics of RCTs have been suggested to influence the placebo response. ⋯ Opioid trials, a high number of planned face-to-face visits, and randomization ratio predicted the magnitude of the placebo response, thereby supporting the expectancy hypothesis. Exploratory models with baseline pain intensity, age, washout length, and discontinuation because of adverse events accounted for approximately 10% of the variability in the placebo response. Based on these results and previous mechanisms studies, we think that patients' perception of treatment allocation and expectations toward treatment efficacy could potently predict outcomes of RCTs.
-
Review
Transcranial Magnetic Stimulation (TMS) of the Brain: Guidelines for Pain Treatment Research.
Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. ⋯ Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after initiation with prespecified statistical analyses. Multigroup collaborations or registry studies may be needed for pivotal trials.
-
Randomized Controlled Trial Multicenter Study
Efficacy and Safety of Tanezumab in the Treatment of Pain from Bone Metastases.
Patients with metastatic bone cancer report life-altering pain. Nerve growth factor is involved in pain signaling. Tanezumab, a nerve growth factor monoclonal antibody, has demonstrated efficacy in chronic pain. ⋯ Adverse event incidence of study 1003 was similar between groups. Although the primary endpoint was not achieved, tanezumab may provide additional sustained analgesia in patients with metastatic bone pain taking daily opioids. Additional larger studies are warranted.
-
Review
Towards a new model of attentional biases in the development, maintenance, and management of pain.
Individuals with chronic pain demonstrate attentional biases (ABs) towards pain-related stimuli. However, the clinical importance of these biases is yet to be determined and a sound theoretical model for explaining the role of ABs in the development and maintenance of pain is lacking. ⋯ Interventions targeting ABs were less consistent; however, there were promising findings among studies that found attentional training effects, particularly for laboratory research. The proposed Threat Interpretation Model suggests a relationship between threat, interpretation, and stimuli in determining attentional processes, which while tentative generates important testable predictions regarding the role of attention in pain and builds on previous theoretical and empirical work in this area.