Pain
-
Menstrual pain is the most prevalent gynecological complaint, and is usually without organic cause (termed primary dysmenorrhea, PDM). The high comorbidity in the later life of PDM with many functional pain disorders (associated with central dysfunction of pain inhibition, eg, fibromyalgia) suggests possible maladaptive functionality of pain modulatory systems already occurred in young PDM women, making them vulnerable to functional pain disorders. Periaqueductal gray (PAG) matter functions as a critical hub in the neuraxis of pain modulatory systems; therefore, we investigated the functional connectivity of PAG in PDM. ⋯ The PAG of PDM subjects exhibited adaptive/reactive hyperconnectivity with the sensorimotor cortex during painful menstruation, whereas it exhibited maladaptive hypoconnectivity with the dorsolateral prefrontal cortex and default mode network (involving the ventromedial prefrontal cortex, posterior cingulate cortex, or posterior parietal cortex) during menstruation or periovulatory phase. We propose that the maladaptive descending pain modulatory systems in PDM may underpin the central susceptibility to subsequent development of various functional disorders later in life. This hypothesis is corroborated by the growing body of evidence that hypoconnectivity between PAG and default mode network is a coterminal to many functional pain disorders.
-
The rostral ventromedial medulla (RVM) exerts both inhibitory and excitatory controls over nociceptive neurons in the spinal cord and medullary dorsal horn. Selective ablation of mu-opioid receptor (MOR)-expressing neurons in the RVM using saporin conjugated to the MOR agonist dermorphin-saporin (derm-sap) attenuates stress and injury-induced behavioral hypersensitivity, yet the effect of RVM derm-sap on the functional integrity of the descending inhibitory system and the properties of RVM neurons remain unknown. Three classes of RVM neurons (on-cells, off-cells, and neutral cells) have been described with distinct responses to noxious stimuli and MOR agonists. ⋯ Furthermore, electrical stimulation of the periaqueductal gray produced analgesia in both derm-sap and saporin controls with similar thresholds. Microinjection of kynurenic acid, a glutamate receptor antagonist, into the RVM disrupted periaqueductal gray stimulation-produced analgesia in both saporin-treated and derm-sap-treated rats. These results indicate that MOR-expressing neurons in the RVM are not required for analgesia produced by either direct or indirect activation of neurons in the RVM.
-
Regular physical activity in healthy individuals prevents development of chronic musculoskeletal pain; however, the mechanisms underlying this exercise-induced analgesia are not well understood. Interleukin-10 (IL-10), an antiinflammatory cytokine that can reduce nociceptor sensitization, increases during regular physical activity. Since macrophages play a major role in cytokine production and are present in muscle tissue, we propose that physical activity alters macrophage phenotype to increase IL-10 and prevent chronic pain. ⋯ Blockade of IL-10 systemically or locally prevented the analgesia in physically active mice, ie, mice developed hyperalgesia. Conversely, sedentary mice pretreated systemically or locally with IL-10 had reduced hyperalgesia after repeated acid injections. Thus, these results suggest that regular physical activity increases the percentage of regulatory macrophages in muscle and that IL-10 is an essential mediator in the analgesia produced by regular physical activity.
-
Obesity is associated with several pain disorders including headache. The effects of obesity on the trigeminal nociceptive system, which mediates headache, remain unknown. We used 2 complementary mouse models of obesity (high-fat diet and leptin deficiency) to examine this. ⋯ We observed higher calcium influx in cultured trigeminal ganglia neurons from obese mice and a higher percentage of medium to large diameter capsaicin-responsive cells. These findings demonstrate that obesity results in functional changes in the trigeminal system that may contribute to abnormal sensory processing. Our findings provide the foundation for in-depth studies to improve the understanding of the effects of obesity on the trigeminal system and may have implications for the pathophysiology of headache disorders.