Pain
-
Patients' expectations are important predictors of the outcome of analgesic treatments, as demonstrated predominantly in research on placebo effects. Three commonly investigated interventions that have been found to induce expectations (verbal suggestion, conditioning, and mental imagery) entail promising, brief, and easy-to-implement adjunctive procedures for optimizing the effectiveness of analgesic treatments. However, evidence for their efficacy stems mostly from research on experimentally evoked pain in healthy samples, and these findings might not be directly transferable to clinical populations. ⋯ Overall, a medium-sized effect of the interventions on patients' pain relief was observed (Hedges g = 0.61, I = 73%), with varying effects of verbal suggestion (k = 18, g = 0.75), conditioning (always paired with verbal suggestion, k = 3, g = 0.65), and imagery (k = 6, g = 0.27). Subset analyses indicated medium to large effects on experimental and acute procedural pain and small effects on chronic pain. In conclusion, patients' pain can be relieved with expectation interventions; particularly, verbal suggestion for acute procedural pain was found to be effective.
-
Meta Analysis
Brain activations during pain: a neuroimaging meta-analysis of pain patients and healthy controls.
In response to recent publications from pain neuroimaging experiments, there has been a debate about the existence of a primary pain region in the brain. Yet, there are few meta-analyses providing assessments of the minimum cerebral denominators of pain. Here, we used a statistical meta-analysis method, called activation likelihood estimation, to define (1) core brain regions activated by pain per se, irrelevant of pain modality, paradigm, or participants and (2) activation likelihood estimation commonalities and differences between patients with chronic pain and healthy individuals. ⋯ Common activations for healthy subjects and patients with pain alike included the thalamus, ACC, insula, and cerebellum. A comparative analysis revealed that healthy individuals were more likely to activate the cingulum, thalamus, and insula. Our results point toward the central role of the insular cortex and ACC in pain processing, irrelevant of modality, body part, or clinical experience; thus, furthering the importance of ACC and insular activation as key regions for the human experience of pain.