Pain
-
Noninvasive measures of neuroinflammatory processes in humans could substantially aid diagnosis and therapeutic development for many disorders, including chronic pain. Several proton magnetic resonance spectroscopy (H-MRS) metabolites have been linked with glial activity (ie, choline and myo-inositol) and found to be altered in chronic pain patients, but their role in the neuroinflammatory cascade is not well known. Our multimodal study evaluated resting functional magnetic resonance imaging connectivity and H-MRS metabolite concentration in insula cortex in 43 patients suffering from fibromyalgia, a chronic centralized pain disorder previously demonstrated to include a neuroinflammatory component, and 16 healthy controls. ⋯ To further elucidate the molecular substrates of the effects observed, we investigated how putative neuroinflammatory H-MRS metabolites are linked with ex vivo tissue inflammatory markers in a nonhuman primate model of neuroinflammation. Results demonstrated that cortical choline levels were correlated with glial fibrillary acidic protein, a known marker for astrogliosis (Spearman r = 0.49, P = 0.03). Choline, a putative neuroinflammatory H-MRS-assessed metabolite elevated in fibromyalgia and associated with pain interference, may be linked with astrogliosis in these patients.
-
Low back pain (LBP) is a highly prevalent and disabling condition whose initiating factors are poorly understood. It is known that psychological and physical stress is associated with LBP but the causal relationship, mechanisms, and mediators have not been elucidated, and a preclinical model enabling the investigation of causality and thereby critically contributing to clinical translation does not exist. In this study, we first established and characterized a myofascial LBP model in mice based on nerve growth factor (NGF) injection into the low back muscles. ⋯ Nerve growth factor-induced LBP was characterized by long-lasting local and plantar mechanical hypersensitivity, cold hyperalgesia, decreased grip strength and wheel running activity, and time-dependent changes of neuropeptide and glial markers in the spinal cord. Interestingly, the exposure to chronic unpredictable stress slightly worsened pain behavior, whereas vCRS primed and highly aggravated pain in this LBP model, by causing per se the intramuscular upregulation of endogenous NGF and increased spinal astrocyte expression. Our mouse model, particularly the combination of NGF injection and vCRS, suggests that similar mechanisms are important in nonspecific LBP and might help to investigate certain aspects of stress-induced exacerbation of pain.
-
EphrinB-EphB receptor tyrosine kinases have been demonstrated to play important roles in pain processing after peripheral nerve injury. We have previously reported that ephrinB-EphB receptor signaling can regulate excitability and plasticity of neurons in spinal dorsal horn, and thus contribute to spinal central sensitization in neuropathic pain. How EphB receptor activation influences excitability of primary neurons in dorsal root ganglion (DRG), however, remains unknown. ⋯ In nerve-injured DRG neurons, elevated expression and activation of EphB1 and EphB2 receptors contributed to the increased intracellular Ca concentration and NMDA-induced Ca influx. Repetitive intrathecal administration of EphB2-Fc inhibited the increased phosphorylation of NR2B and Ca-dependent subsequent signals Src, ERK, and CaMKII as well as behaviorally expressed pain after nerve injury. These findings demonstrate that activation of EphB receptors can modulate DRG neuron excitability by facilitating Ca influx directly or through Src kinase activation-mediated NMDA receptor phosphorylation and that EphB receptor activation is critical to DRG neuron hyperexcitability, which has been considered critical to the subsequent spinal central sensitization and neuropathic pain.