Pain
-
Pain-related learning mechanisms likely play a key role in the development and maintenance of chronic pain. Previous smaller-scale studies have suggested impaired pain-related learning in patients with chronic pain, but results are mixed, and chronic back pain (CBP) particularly has been poorly studied. In a differential conditioning paradigm with painful heat as unconditioned stimuli, we examined pain-related acquisition and extinction learning in 62 patients with CBP and 61 pain-free healthy male and female volunteers using valence and contingency ratings and skin conductance responses. ⋯ State anxiety was linked to increased safety learning in healthy volunteers but enhanced threat learning in the patient group. Our findings corroborate previous evidence of altered pain-related threat and safety learning in patients with chronic pain. Longitudinal studies exploring pain-related learning in (sub)acute and chronic pain are needed to further unravel the role of aberrant pain-related learning in the development and maintenance of chronic pain.
-
Endometriosis is a chronic and debilitating condition, commonly characterised by chronic pelvic pain (CPP) and infertility. Chronic pelvic pain can be experienced across multiple pelvic organs, with comorbidities commonly effecting the bowel, bladder, and vagina. Despite research efforts into endometriosis pathophysiology, little is known about how endometriosis induces CPP, and as such, therapeutic interventions are lacking. ⋯ Additionally, we found that mice with fully developed endometriosis displayed hypersensitivity evoked by (1) vaginal distension, (2) colorectal distension, (3) bladder distension, and (4) cutaneous thermal stimulation, compared to their sham counterparts. Moreover, endometriosis mice displayed alterations in spontaneous behaviour indicative of (5) altered bladder function and (6) anxiety. This model creates a foundation for mechanistical studies into the diffuse CPP associated with endometriosis and the development of targeted therapeutic interventions to improve the quality of life of women with endometriosis.
-
Capsaicin is a specific agonist of transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptors. Capsaicin not only produces acute pain but also leads to long-lasting analgesia in patients with chronic pain. Although capsaicin-induced TRPV1 and Ca 2+ /calpain-dependent ablation of axonal terminals is necessary for long-lasting analgesia, the mechanisms underlying capsaicin-induced ablation of axonal terminals and its association with analgesia are not fully understood. ⋯ Despite the suggested involvement of TRPV1 Ser801 phosphorylation on microtubule integrity, capsaicin-induced analgesia was not affected in TRPV1 S801A knock-in mice. In conclusion, capsaicin-induced depolymerization of axonal microtubules determined capsaicin-induced ablation of nociceptive terminals and the extent of analgesia. Further understanding of TRPV1/Ca 2+ -dependent mechanisms of capsaicin-induced ablation and analgesia may help to improve the management of chronic pain.
-
Several bone conditions, eg, bone cancer, osteoporosis, and rheumatoid arthritis (RA), are associated with a risk of developing persistent pain. Increased osteoclast activity is often the hallmark of these bony pathologies and not only leads to bone remodeling but is also a source of pronociceptive factors that sensitize the bone-innervating nociceptors. Although historically bone loss in RA has been believed to be a consequence of inflammation, both bone erosion and pain can occur years before the symptom onset. ⋯ By contrast, we found that inhibiting osteoclast activity and acid-sensing ion channel 3 signaling prevented the development of B02/B09-mediated mechanical hypersensitivity. Moreover, we have identified secretory phospholipase A2 and lysophosphatidylcholine 16:0 as critical components of B02/B09-induced pain-like behavior and shown that treatment with a secretory phospholipase A2 inhibitor reversed B02/B09-induced mechanical hypersensitivity and bone erosion. Taken together, our study suggests a potential link between bone erosion and pain in a state of subclinical inflammation and offers a step forward in understanding the mechanisms of bone pain in diseases such as RA.