Pain
-
Ambroxol is a multifaceted drug with primarily mucoactive and secretolytic actions, along with anti-inflammatory, antioxidant, and local anaesthetic properties. It has a long history of use in the treatment of respiratory tract diseases and has shown to be efficacious in relieving sore throat. In more recent years, ambroxol has gained interest for its potential usefulness in treating neuropathic pain. ⋯ With its well-established safety profile, extensive preclinical and clinical drug data, and early evidence of clinical effectiveness, ambroxol is an old drug worthy of further investigation for repurposing. As a patent-expired drug, a push is needed to progress the drug to clinical trials for neuropathic pain. We encourage the pharmaceutical industry to look at patented drug formulations and take an active role in bringing an optimized version for neuropathic pain to market.
-
An ACVR1 activating mutation causes neuropathic pain and sensory neuron hyperexcitability in humans.
Altered bone morphogenetic protein (BMP) signaling is associated with many musculoskeletal diseases. However, it remains unknown whether BMP dysfunction has direct contribution to debilitating pain reported in many of these disorders. Here, we identified a novel neuropathic pain phenotype in patients with fibrodysplasia ossificans progressiva (FOP), a rare autosomal-dominant musculoskeletal disorder characterized by progressive heterotopic ossification. ⋯ Although there was no major effect of ACVR1 R206H on differentiation and maturation of nociceptive sensory neurons (iSNs) derived from FOP induced pluripotent stem cells, both intracellular and extracellular electrophysiology analyses of the ACVR1 R206H iSNs displayed ACVR1-dependent hyperexcitability, a hallmark of neuropathic pain. Consistent with this phenotype, we recorded enhanced responses of ACVR1 R206H iSNs to TRPV1 and TRPA1 agonists. Thus, activated ACVR1 signaling can modulate pain processing in humans and may represent a potential target for pain management in FOP and related BMP pathway diseases.
-
Total knee arthroplasty (TKA) is effective for pain reduction in most patients, but 15% or more report unsatisfactory long-term pain outcomes. We tested whether oxidative stress (OS) related to extended tourniquet application during TKA and subsequent ischemic reperfusion (IR) contributed to adverse post-TKA pain outcomes. Blood samples were obtained in 91 patients with osteoarthritis (63% female) undergoing TKA before tourniquet placement (T1), 45 minutes after tourniquet inflation (T2), and 15 minutes after tourniquet removal (T3). ⋯ Longer ischemia duration was unexpectedly associated with lower baseline-corrected pain intensity at 6-month follow-up. Combined OS was not linked to functional outcomes at either follow-up. Elevated perioperative OS seems to exert small but significant adverse effects on long-term post-TKA pain outcomes, although this OS seems unrelated to IR injury associated with extended tourniquet use.
-
Nerve trauma-induced alternations of gene expression in the neurons of dorsal root ganglion (DRG) participate in nerve trauma-caused nociceptive hypersensitivity. Transcription factors regulate gene expression. Whether the transcription factor E74-like factor 1 (ELF1) in the DRG contributes to neuropathic pain is unknown. ⋯ Mechanistically, more ELF1 directly bond to and activated Mmp9 promoter in injured DRG neurons after CCI. Our data indicate that ELF1 participates in nerve trauma-caused nociceptive hypersensitivity likely through upregulating MMP9 in injured DRG. E74-like factor 1 may be a new target for management of neuropathic pain.
-
Neurons in the superficial dorsal horn that express the gastrin-releasing peptide receptor (GRPR) are strongly implicated in spinal itch pathways. However, a recent study reported that many of these correspond to vertical cells, a population of interneurons that are believed to transmit nociceptive information. In this study, we have used a GRPR CreERT2 mouse line to identify and target cells that possess Grpr mRNA. ⋯ Anatomical analysis revealed that the GRPR neurons are indeed vertical cells, and that their axons target each other, as well as arborising in regions that contain projection neurons: lamina I, the lateral spinal nucleus, and the lateral part of lamina V. Surprisingly, given the proposed role of GRPR cells in itch, we found that most of the cells received monosynaptic input from Trpv1-expressing (nociceptive) afferents, that the majority responded to noxious and pruritic stimuli, and that chemogenetically activating them resulted in pain-related and itch-related behaviours. Together, these findings suggest that the GRPR cells are involved in spinal cord circuits that underlie both pain and itch.