Inflammation
-
We aimed to investigate the preventive and therapeutic effect of apocynin (APO) on bleomycin (BLC)-induced lung injury in rats. Rats were assigned into groups as follows: control group; APO group, 20 mg/kg APO was given intraperitoneal for 29 days; BLC-1 and BLC-2 groups, a single intratracheal injection of BLC (2.5 mg/kg); APO+BLC-preventive group, 20 mg/kg APO was administered 12 h before the intratracheal BLC injection and continued for 14 days; BLC+APO-treatment group, 20 mg/kg APO was given on the 14th day after the intratracheal BLC injection and continued to sacrifice. The BLC-1 group was sacrificed on the 14th day of BLC administration to validate BLC-induced lung inflammation and fibrosis on the 14th of study initiation. ⋯ Otherwise, APO administration, both before and after BLC, reversed all biochemical markers and cytokine as well as histopathological changes induced by BLC. Interestingly, APO treatment reversed MPO activity in serum increased by BLC. In this study, both protective and therapeutic effects of APO against BLC-induced lung fibrosis were demonstrated for the first time.
-
Acute lung injury (ALI) is characterized by alveolar injury and uncontrolled inflammation. Mechanisms underlying pathogenesis of ALI are unknown. Regulatory T cells (Tregs), either natural or induced, suppress a variety of physiological and pathological immune responses. ⋯ Since Tim-3 is a negative regulatory molecule and can modulate the function of Tregs, we evaluated Tim-3 level on Tregs and identified upregulation of the molecule in patients than that in controls. Moreover, compared to those who died during the study, patients who survived showed 1.7-fold higher level of Tim-3 on Tregs at the time of recruitment (P<0.001). These results suggest that Tregs could affect the prognosis of ALI probably due to the upregulation of Tim-3.