Inflammation
-
Protease-activated receptors (PARs) are G protein-coupled receptors of which four members PAR1, PAR2, PAR3, and PAR4 have been identified, characterized by a typical mechanism of activation involving various related proteases. The amino-terminal sequence of PARs is cleaved by a broad array of proteases, leading to specific proteolytic cleavage which forms endogenous tethered ligands to induce agonist-biased PAR activation. ⋯ Irrespective of its role in thrombin-induced platelet aggregation, PAR4 activation is believed to be involved in inflammatory lesions, as show by investigations that have unmasked the effects of PAR4 on neutrophil recruitment, the regulation of edema, and plasma extravasation. This review summarizes the roles of PAR4 in coagulation and other extracellular protease pathways, which activate PAR4 to participate in normal regulation and disease.
-
Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. ⋯ This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.
-
Sepsis is often initiated by invasive infection, characterized by overwhelming induction of pro-inflammatory cytokines. The incidence and mortality of sepsis and the associated development of acute kidney injury (AKI) remain high, and lines of research into potential treatments are needed. This study was conducted to investigate effects of alpha-lipoic acid (ALA) on septic AKI in vitro. ⋯ LPS-enhanced phosphorylation of nuclear factor kappa B (NF-κB) inhibitor alpha (IκBα) and IκB kinase alpha/beta (IKKα/β) and nuclear translocation of NF-κB subunit p65 in HBZY-1 cells were inhibited by ALA pretreatment. Additionally, the NF-κB inhibitor N-acetylcysteine (NAC) exerted similar inhibitory effects as ALA on COX-2 and iNOS expression. In summary, our study demonstrates that ALA mitigates LPS-induced inflammatory responses in rat mesangial cells probably via inhibition of NF-κB signaling pathway, suggesting a therapeutic potential of ALA in AKI related to sepsis.