Inflammation
-
Mechanical ventilation (MV) can augment sepsis-induced organ injury. Previous studies indicate that human mesenchymal stem cells (hMSCs) have immune-modulatory effect. We hypothesize that human adipose tissue-derived stromal cells (hADSCs) could attenuate MV and sepsis-induced organ injury. ⋯ Real-time quantitative PCR was used to analyze mRNA of IL-6 and tumor necrosis factor-α (TNF-α). hADSC treatment increased survival rate of septic mice with MV. hADSCs attenuated dysfunction of the liver and kidney and decreased lung inflammation and tissue injury of the liver and lung. IL-6 level in BALF and TNF-α and IL-6 mRNA expression in the tissue of the lung, liver, and kidney were significantly reduced by hADSC treatment. MV with conventional tidal volume aggravates CLP-induced multiple organ injuries. hADSCs inhibited the compound injuries possibly through modulation of immune responses.
-
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) undergoes the process of pathological event including lung tissue dysfunction, pulmonary edema, and inflammation in sepsis. Autophagy is a cytoprotective process recognized as one of the major pathways for degradation and recycling of cellular constituents. Autophagy as a protective or maladaptive response was still confused in ALI during sepsis. ⋯ Compared with ALI group, Baf and CQ obviously elevated the level of LC3II and Beclin 1, and reduced the LAMP2 and Rab7 expressions in CLP + Baf group and ALI + CQ group. Compared with CLP group, autophagic inducer rapacymin improved the survival rate, histologic scores, lung wet/dry weight ratio, PaO2/FiO2, total cells, and PMNS in BALF and MPO activity and cytokines TNF-α, HMGB1, IL-6, IL-10, and MCP1 in CLP + RAP group, but there were exacerbated above indicators in CLP + 3-MA group, CLP + Baf group, and CLP + CQ group. Autophagy activation participated in the pathophysiologic process of sepsis, and alleviated the cytokine excessive release and lung injury in sepsis.
-
Blunt chest (thoracic) trauma (TxT) and hemorrhagic shock (HS)-induced local and systemic inflammation with increased neutrophil activity often result in an impaired organ function. Next to increasing the trauma risk, binge drinking causes anti-inflammatory effects due to immunomodulatory properties of alcohol (ethanol, EtOH). The impact of clinically relevant acute binge drinking scenario on local and systemic inflammatory changes, notably regarding the activity and longevity of leukocytes, has been analyzed in a combinatory trauma model of TxT + H/R. ⋯ Apoptosis was prolonged only in PMN after TxT + H/R and was further prolonged by EtOH, an effect that was observed in sham animals as a trend as well. Acute EtOH exposure inhibits the activation of circulating leukocytes after trauma compared to controls. These EtOH-driven systemic changes may be associated with reduced infiltration with PMN after trauma as well as reduced local tissue inflammation.