Journal of neuroscience research
-
The glycine and somatostatin (SS) neurotransmission systems in the brain have been implicated in the function of sensory, motor, and nociceptive pathways. To investigate a possible relationship between these two components, we studied the influence of glycine on the binding of 125I-Tyr11-SS to its receptors and on SS-like immunoreactivity (SSLI) levels in the rat hippocampus and frontoparietal cortex. An intracerebroventricular (i.c.v.) dose of 16 or 160 nmol of glycine induced an increase in the total number of specific SS receptors in the hippocampus but not in the frontoparietal cortex at 15 min following injection, with no changes in the affinity constant. ⋯ This suggests that the increased inhibition of AC activity by SS in the glycine-treated group may be due to the increase in Gi activity and/or the increase in the number of SS receptors observed. Alternatively, the greater Gi activity may be responsible for the increased binding of 125I-Tyr11-SS to its receptors observed after glycine administration. Altogether, these data suggest that the hippocampal somatostatinergic system can be regulated by strychnine-sensitive glycine receptors in the rat.