Journal of neuroscience research
-
Reactive oxygen species (ROS) can have deleterious effects for both normal aging and Alzheimer's disease (AD). We examined the hypothesis that synapses undergoing long-term potentiation (LTP) are preferentially at risk for ROS-mediated oxidative stress during aging. We observed age-dependent deficits in LTP induced by a high-frequency stimulation (HFS) protocol in the CA1 region of hippocampus from C57BL/6 mice. ⋯ However with aging, there is a significant enhancement in the levels of autophosphorylated CaMKII in H(2)O(2)-treated CA1 of older mice. Phosphorylation of RC3/neurogranin (Ng) by protein kinase C (PKC) is decreased in CA1 in response to H(2)O(2) treatment, irrespective of age. We propose that, during aging, enhanced local release of H(2)O(2) from mitochondria may induce a compensatory "ceiling" effect at synapses, so that the levels of autophosphorylated alpha CaMKII are aberrantly saturated, leading to alterations in synaptic plasticity.
-
Neurogenesis is known to continue in the adult hippocampus of mammals, including humans. The present experiments were undertaken to examine the nature of developing neurons generated in the dentate gyrus of young and older rodents using immature neuronal markers such as highly polysialylated neural cell adhesion molecules (PSA-NCAM), collapsin response-mediated protein-4 (CRMP-4) and NeuroD. Most PSA-expressing cells are simultaneously positive for CRMP-4 and NeuroD in young rats. ⋯ BrdU analysis revealed that CRMP-4 is expressed for a longer period than PSA in BrdU-labeled neurons. The number of immature neurons expressing PSA, NeuroD or CRMP-4 decreased in older rodents, but no qualitative difference was found in the expression patterns of these molecular markers between young and older rodents. These results suggest not only that immunohistochemistry, using a combination of these immature and mature neuronal markers, is helpful for clarifying the developmental state of newly generated neurons, but also that newly generated neurons in young adult and older rodents have similar properties.