Journal of neuroscience research
-
Channel properties and synaptic targeting of N-methyl-D-aspartate (NMDA) receptors determine their importance in synaptic transmission, long-term synaptic plasticity, and developmental reorganization of synaptic circuits. To investigate the involvement of the C-terminal domain of the NR2B subunit in regulating channel properties and synaptic localization, we analyzed gene-targeted mice expressing C-terminally truncated NR2B subunits (NR2B(DeltaC/DeltaC) mice; Sprengel et al. [1998] Cell 92:279-89). Because homozygous NR2B(DeltaC/DeltaC) mice die perinatally, we studied embryonic neocortical neurons differentiating in culture. ⋯ In neurons from NR2B(DeltaC/DeltaC) mice, the synaptic NMDA receptor fraction was drastically reduced, suggesting that the C-terminal domain of the NR2B subunit plays a major role in synaptic targeting of NMDA receptors at nascent synapses. With increasing time in culture, the reduction in NMDA EPSCs in neurons from NR2B(DeltaC/DeltaC) mice diminished. This is explained by the expression of additional NMDA receptor subtypes containing NR2A subunits at more mature synapses.
-
This study investigated the feasibility of using a peripheral nerve autograft (NAG) to promote and guide regeneration of sensory axons from the caudal lumbar dorsal roots to the rostral dorsal column following a lower thoracic cordotomy in adult rats. After a left hemicordotomy at the T13 vertebra level and ipsilateral L3 and L4 rhizotomies, a peripheral NAG (peroneal nerve) was connected to the distal roots stumps, then implanted into the left dorsal column 10 mm rostral to hemicordotomy site (n = 12). After surgery, all animals of the experimental group experienced complete anesthesia in their left hindlimb. ⋯ Histological analysis of the NAG showed evidence of axonal regeneration in all 8 animals with positive retrograde labeling of DRG neurons. However, we did not find a statistical correlation between the number of HRP-stained neurons and the degree of sensory recovery. This study demonstrates that an NAG joining dorsal roots to the dorsal column, thus shunting the original CNS-PNS junction, can support regeneration of central axons from DRG primary sensory neurons into the dorsal column over distances of at least 30 mm despite the inhibitory influence of the CNS white matter.