Journal of neuroscience research
-
Comparative Study
Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats.
Diabetic patients have impaired learning/memory, brain atrophy, and two-fold increased risk of dementia. The cause of cognitive disturbances that progress to dementia is unknown. Because neurotrophic insulin-like growth factor (IGF) levels are reduced in diabetic patients and rodents, and IGF can cross the blood-central nervous system barrier (B-CNS-B), the hypothesis was tested that IGF administered systemically can prevent cognitive disturbances, independently of hyperglycemia and a generalized catabolic state. ⋯ An anti-IGF antibody, or preimmune serum, was infused into the lateral ventricles in non-diabetic rats. Learning in a passive avoidance task was impaired significantly in the IGF antibody versus preimmune serum-treated groups on test Days 1, 2, and 3 (P = 0.04, 0.02 and 0.004, respectively). The data together are consistent with a model in which brain IGF is essential for learning/memory, and a loss of IGF activity due to diabetes may contribute to cognitive disturbances.
-
Comparative Study
Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons.
Exogenous neurotrophic factors provided at a spinal cord injury site promote regeneration of chronically injured rubrospinal tract (RST) neurons into a peripheral nerve graft. The present study tested whether the response to neurotrophins is associated with changes in the expression of two regeneration-associated genes, betaII-tubulin and growth-associated protein (GAP)-43. Adult female rats were subjected to a right full hemisection lesion via aspiration of the C3 spinal cord. ⋯ Interestingly, 7 days after GDNF treatment, the mean cell size of chronically injured RST neurons was increased significantly. Although GDNF and BDNF both promote axonal regeneration by chronically injured neurons, only GDNF treatment is associated with upregulation of betaII-tubulin or GAP-43 mRNA. It is not clear from the present study how exogenous BDNF stimulates regrowth of injured axons.