Journal of neuroscience research
-
The cannabinoids (CB) modulate the extracellular signal-regulated kinase (ERK), leading to various forms of plasticity in the brain. Little is known, however, on the in vivo short- and long-term activation and regulation of the components of mitogen-activated protein kinase (MAPK)/ERK signaling by CB. The CB agonist WIN55212-2 (8 mg/kg) increased the immunodensities of phosphorylated c-Raf-1 (42%), MEK1/2 (63%), ERK1 (24%), and ERK2 (28%) in the rat cerebral frontal cortex. ⋯ Pretreatment with MK801 (1 mg/kg, a NMDA receptor antagonist) effectively blocked the up-regulation c-Raf-1 (41%), MEK1/2 (57%) and ERK1/2 (25-30%) induced by the CB agonist. The main findings demonstrate that the acute stimulation of CB(1) receptors in the frontal cortex results in the sequential phosphorylation of Raf-MEK-ERK cascade, in which c-Raf-1 activation (rate-limiting process) plays a crucial role. Moreover, the in vivo stimulating effect of WIN55212-2 on Raf-MEK-ERK signaling is under the extrinsic regulation of an excitatory glutamatergic mechanism.
-
Chondroitin sulfate increases around a lesion site after central nervous system injury and is believed to be an impediment to axonal regeneration, because administration of chondroitinase ABC, a chondroitin sulfate-degrading enzyme, promotes axonal regeneration of central neurons. To examine the physiological role of chondroitin sulfate up-regulation after injury, the nigrostriatal dopaminergic axons were unilaterally transected in mice, and chondroitinase ABC was then injected into the lesion site. In mice transected only, tyrosine hydroxylase-immunoreactive axons did not extend across the lesion at 1 or 2 weeks after the transection. ⋯ In these animals, chondroitin sulfate immunoreactivity remarkably decreased, and immunoreactivity of 2B6 antibody, which recognizes the stub of degraded chondroitin sulfate side chains, was enhanced. Furthermore, the formation of a fibrotic scar and a glia limitans that surrounds the former was completely prevented, although type IV collagen immunoreactivity remained in newly formed blood capillaries around the lesion site. We discuss the question of whether the chondroitin sulfate is acting as a direct inhibitor of axonal regeneration or whether the observed changes are due to a prevention of the fibrotic scar formation and a rearrangement of astrocytic membranes.
-
Although alterations in adenylate cyclase (AC) activity and somatostatin (SRIF) receptor density have been reported in Alzheimer's disease, the effects of amyloid beta-peptide (Abeta) on these parameters in the hippocampus are unknown. Our aim was to investigate whether the peptide fragment Abeta(25-35) can affect the somatostatinergic system in the rat hippocampus. Hence, Abeta(25-35) was injected intracerebroventricularly (i.c.v.) to Wistar rats in a single dose or infused via an osmotic minipump connected to a cannula implanted in the right lateral ventricle during 14 days. ⋯ Furthermore, the protein levels of the neural-specific AC type I were significantly decreased in the hippocampus of the treated rats, whereas an increase in the levels of AC V/VI was found, with no alterations in type VIII AC. A single i.c.v. dose of Abeta(25-35) exerted no effect on SRIF content or SRIF receptors but induced a slight decrease in forskolin-stimulated AC activity and its inhibition by SRIF. Because chronic Abeta(25-35) infusion impairs learning and memory whereas SRIF facilitates these functions, the alterations described here might be physiologically important given the decreased cognitive behavior previously reported in Abeta-treated rats.