Journal of neuroscience research
-
It is suggested that dysfunction of the diencephalospinal dopaminergic (DAergic) pathway may cause restless legs syndrome. We examined the mRNA and protein levels as well as DA receptor subtypes function within the lumbar spinal cord of an RLS animal model. C57BL/6 male mice with or without iron deprivation were lesioned with 6-hydroxydopamine (6-OHDA) in the bilateral A11 nuclei. ⋯ ID with 6-OHDA lesions produced a synergistic greater decrease of D2 binding. Although ID increased D1 mRNA and protein expression in the spinal cord, it did not significantly change D1 receptor binding. The present study suggests that ID and 6-OHDA lesions in A11 nuclei differentially altered the D1, D2, and D3 receptors expression and binding capacity in the lumbar spinal cord of RLS animal model, which was accompanied by changes in locomotor activities.
-
A recombinant human monoclonal IgM, rHIgM22, promotes the synthesis of new myelin when used to treat several animal models of demyelination. rHIgM22 binds to myelin and the surface of oligodendrocytes and accumulates at central nervous system lesions in vivo. The minimal dose of monoclonal IgM required to promote remyelination has a direct bearing on the proposed mechanism of action. A dose ranging study using rHIgM22 was performed in mice with chronic virus-induced demyelination, a model of chronic progressive multiple sclerosis. ⋯ Two doses of rHIgM22 spaced 5 weeks apart did not increase the extent of remyelination over a single dose. The half-life of rHIgM22 in the mouse systemic circulation was determined to be 15 hr; the human IgM serum concentration was close to zero by 48 hr following antibody administration. We propose that the specificity of rHIgM22 for myelin on living tissue targets the antibody to demyelinated lesions, initiating a long-term reparative effect on the central nervous system.