Journal of neuroscience research
-
Review
Pain relief by gabapentin and pregabalin via supraspinal mechanisms after peripheral nerve injury.
The antihypersensitivity actions of gabapentin and pregabalin have been well characterized in a large number of studies, although the underlying mechanisms have yet to be defined. We have been focusing on the supraspinal structure as a possible site for their action and have demonstrated that intracerebroventricular (i.c.v.) administration of gabapentin and pregabalin indeed decreases thermal and mechanical hypersensitivity in a murine chronic pain model involving partial ligation of the sciatic nerve. This novel supraspinally mediated analgesic effect was markedly suppressed by either depletion of central noradrenaline (NA) or blockade of spinal alpha(2)-adrenergic receptors. ⋯ Moreover, gabapentin did not reduce IPSCs in slices taken from mice given a sham operation. Although gabapentin altered neither the amplitude nor the frequency of miniature IPSCs, it reduced IPSCs together with an increase in the paired-pulse ratio, suggesting that gabapentin acts on the presynaptic GABAergic nerve terminals in the LC. Together, the data suggest that gabapentin presynaptically reduces GABAergic synaptic transmission, thereby removing the inhibitory influence on LC neurons only in neuropathic pain states, leading to activation of the descending noradrenergic system.
-
Pregnant Wistar rats were orally treated with the adenosine receptor agonist R-phenylisopropyladenosine (R-PIA) throughout the gestational period, and the status of the metabotropic glutamate (mGlu) receptor/phospholipase C transduction pathway from maternal and fetal brain was analyzed. In mothers' brains, radioligand binding assays revealed a significant decrease in the Bmax value, without any significant alteration in Kd value. Similar results were observed in the steady-state level of mGlu(1) and mGlu(5) receptors assayed by Western blot, suggesting that both receptor subtypes were modulated by chronic R-PIA treatment. mRNA coding mGlu(1) or mGlu(5) receptors was not altered, suggesting a posttranscriptional modulation as a possible mechanism of the loss of mGlu(1) and mGlu(5) receptors at the membrane surface. ⋯ Western blot and RT-PCR assays showed that neither alphaG(q/11) nor PLCbeta(1) was affected by R-PIA treatment. In fetal brain, no significant differences in mGlu receptors/PLC transduction pathway were observed after R-PIA treatment. These results suggest that chronic R-PIA intake during pregnancy modulates group I mGlu receptor signalling pathway in maternal brain, promoting a down-regulation of mGlu(1) and mGlu(5) receptors and a heterologous desensitization of the mGlu/PLC system.
-
We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. ⋯ Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.
-
The transcription factor Pitx3 is crucial for the development and differentiation of dopamine (DA) neurons. Our previous work has shown the Pitx3 can up-regulate the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma cell line SH-SY5Y. Primary astrocytes are the major nonneuronal cells and can be easily modified genetically to deliver therapeutic molecules into the brain, so we investigated whether Pitx3 can increase the expression and secretion of BDNF and GDNF in primary astrocytes. ⋯ We found that the BDNF and GDNF levels were 1.4-fold and 1.5-fold higher in the CM from Pitx3-transfected astrocytes than empty vectors-transfected controls. Incubation with the CM from Pitx3-transfected astrocytes significantly attenuated the rotenone-induced DA neuron injury, and such protection can be significantly blocked by preincubation with antibodies against either BDNF or GDNF, whereas preincubation with purified BDNF or GDNF replicated the neuroprotection against rotenone-induced injury in VM cultures. These results demonstrate that Pitx3-transfection in astrocytes can up-regulate BDNF and GDNF expression and produce protective benefit to DA neurons, which might be a potential therapeutic alternative for Parkinson's disease.
-
The fibrotic scar formed after central nervous system injury has been considered an obstacle to axonal regeneration. The present study was designed to examine whether cell transplantation into a damaged central nervous system can reduce fibrotic scar formation and promote axonal regeneration. Nigrostriatal dopaminergic axons were unilaterally transected in rats and cultures of olfactory-ensheathing cells (OECs), and olfactory nerve fibroblasts were transplanted into the lesion site. ⋯ Reactive astrocytes and chondroitin sulfate immunoreactivity increased around the transplants, whereas the deposition of type IV collagen and fibrotic scar formation were completely prevented at the lesion site. Transplantation of meningeal fibroblasts similarly prevented the formation of the fibrotic scar, although its effect on regeneration was less potent than transplantation of OECs and olfactory nerve fibroblasts. The present results suggest that elimination of the inhibitory fibrotic scar is important for neural regeneration.