Journal of neuroscience research
-
Although spinal glia acquire a reactive profile in radiculopathy, glial cell proliferation remains largely unstudied. This study investigated spinal glial proliferation in a model simulating painful disc herniation; the C7 nerve root underwent compression and chromic gut suture exposure or sham procedures. A subset of injured rats received minocycline injections prior to injury. ⋯ Spinal cellular proliferation after injury was not changed by minocycline injection. By day 3, the number of BrdU-positive cells had returned to sham levels bilaterally. Data indicate that spinal microglia proliferate after injury but that proliferation is not abolished by minocycline treatment that attenuates allodynia, indicating that spinal microglial proliferation may be related to injury and may not be linked to changes in sensory perception.
-
Mammalian secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) is a positive allosteric ligand for alpha7 nicotinic acetylcholine (ACh) receptors (alpha7 nAChRs) that potentiates responses to ACh and elicits proapoptotic activity in human keratinocytes. Mutations in the gene encoding SLURP-1 have been detected in patients with Mal de Meleda, a rare autosomal recessive skin disorder characterized by transgressive palmoplantar keratoderma. On the basis of these findings, SLURP-1 is postulated to be involved in regulating tumor necrosis factor-alpha (TNF-alpha) release from keratinocytes and macrophages via alpha7 nAChR-mediated pathways. ⋯ In addition, high-affinity choline transporter (CHT1) was detected in apical regions of bronchial epithelial cells and in neurons located in the lamina propria of the bronchus, suggesting that bronchial epithelial cells are able to synthesize both SLURP-1 and ACh. We also observed direct contact between F4/80-positive macrophages and bronchial epithelial cells and the presence of invading macrophages in close proximity to CHT1-positive nerve elements. Collectively, these results suggest that SLURP-1 contributes to the maintenance of bronchial epithelial cell homeostasis and to the regulation of TNF-alpha release from macrophages in bronchial tissue.