Journal of neuroscience research
-
The effect of acoustic overstimulation on the neuronal number of the cochlear nucleus (CN) was investigated by using unbiased stereological methods in rats. We found that, after 9 weeks of recovery, neurons in the anteroventral cochlear nucleus (AVCN) degenerated, whereas those in the posteroventral and dorsal cochlear nuclei (PVCN and DCN) were preserved. The noise trauma induced near complete loss of the outer hair cells throughout the cochlea, and the inner hair cells were preserved only in the more apical regions. ⋯ We hypothesized that AVCN neuronal death was induced by excitotoxic mechanisms via AMPA-type glutamate receptors and that excitatory neuronal circuits developed after acoustic overstimulation protected the PVCN and DCN against neuronal death. The results of the present study demonstrate that hearing loss from different etiologies will cause different patterns of neuronal degeneration in the CN. These findings are important for enhancing the performance of cochlear implants and auditory brainstem implants, because diverse types of hearing loss can selectively affect neuronal degeneration of the CN.