Journal of neuroscience research
-
The facet joint is commonly associated with neck and low back pain and is susceptible to loading-induced injury. Although tensile loading of the cervical facet joint has been associated with inflammation and neuronal hyperexcitability, the mechanisms of joint loading-induced pain remain unknown. Altered brain-derived neurotrophic factor (BDNF) levels are associated with a host of painful conditions, but the role of BDNF in loading-induced joint pain remains undefined. ⋯ Painful distraction also significantly increased BDNF mRNA (P = 0.031) and protein expression (P = 0.047) over sham responses in the spinal cord at day 7. In a separate study, intrathecal administration of the BDNF-sequestering molecule trkB-Fc on day 5 after injury partially attenuated behavioral sensitivity after joint distraction and reduced pERK in the spinal cord at day 7 (P < 0.045). Changes in BDNF after painful facet joint injury and the effect of spinal BDNF sequestration in partially reducing pain suggest that BDNF signaling contributes to the maintenance of loading-induced facet pain but that additional cellular responses are also likely involved.
-
Among noninvasive functional brain imaging techniques, (18) F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) has a comparative advantage in detecting active brain regions in freely locomoting animals. We developed an [(18) F]FDG-PET protocol that visualizes active brain regions that respond preferentially to citrate-induced multiple behaviors in freely locomoting rats. In addition, c-Fos immunohistochemistry, an activity-dependent mapping, was performed to examine whether the areas detected by PET correspond to regions with c-Fos-immunopositive neurons. ⋯ In addition, the ventrolateral striatum and the cingulate and entorhinal cortices, which have received less attention in the field of gustatory studies, also showed an increase in FDG signals. As expected, c-Fos-immunopositive cells were also found in these regions, suggesting that increased FDG signals induced by intraoral citrate injection are likely to reflect neural activity in these regions. Our [(18) F]FDG-PET protocol reveals the contributions of multiple brain regions responding to aversive taste in freely locomoting rats, and this approach may aid in the identification of unknown neural networks especially relating to the limbic information processing.
-
Hydrogen sulfide (H2 S), a toxic volcanic gas, functions as a gaseous physiological and pathophysiological molecule. Recently we have shown that H2 S elicits acute pain through the activation of transient receptor potential ankyrin 1 (TRPA1), which is expressed mainly in primary nociceptive neurons. We also demonstrated enhancement of H2 S-induced TRPA1 activation and pain under inflammatory acidic conditions, but the underlying mechanism has not been elucidated. ⋯ H2 S failed to increase the intracellular ROS level and only slightly decreased pHi. These results suggest that H2 S directly activates TRPA1 and that its increment of diffusion into cells may be involved in the potentiation of TRPA1 activation under external acidic conditions. Thus, our study supports the pathophysiological functions of H2 S in inflammatory pain.
-
Understanding the molecular mechanism of cerebral hypoxic preconditioning (HPC)-induced endogenous neuroprotection may provide potential therapeutic targets for ischemic stroke. By using bioinformatics analysis, we found that miR-181b, one of 19 differentially expressed miRNAs, may target aconitate hydratase (ACO2), heat shock protein A5 (HSPA5), and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) among 26 changed protein kinase C isoform-specific interacting proteins in HPC mouse brain. In this study, the role of miR-181b in oxygen-glucose deprivation (OGD)-induced N2A cell ischemic injury in vitro and mouse middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury in vivo, and its regulation of ACO2, HSPA5, and UCHL1 were further determined. ⋯ By using a T7 promoter-driven control dual luciferase assay, we confirmed that miR-181b could bind to the 3'-untranslated rergions of HSPA5 and UCHL1 mRNAs and repress their translations. miR-181b antagomir reduced caspase-3 cleavage and neural cell loss in cerebral ischemic cortex and improved neurological deficit of mice after MCAO. In addition, HSPA5 and UCHL1 short interfering RNAs (siRNAs) blocked anti-miR-181b-mediated neuroprotection against OGD-induced N2A cell injury in vitro. These results suggest that the downregulated miR-181b induces neuroprotection against ischemic injury through negatively regulating HSPA5 and UCHL1 protein levels, providing a potential therapeutic target for ischemic stroke.