Journal of neuroscience research
-
The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. ⋯ In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI.
-
The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. ⋯ A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury.
-
Transient receptor potential vanilloid type 1 (TRPV1) channels are capable of detecting and integrating noxious stimuli and play an important role in nociceptor activation and sensitization. It has been demonstrated that oxidizing agents are capable of positively modulating (sensitizing) the TRPV1 channel. The present study investigates the ability of the thiol-oxidizing agent phenylarsine oxide (PAO) to modulate TRPV1 currents under voltage-clamp conditions. ⋯ This same effect was seen with these recombinant cells in calcium imaging experiments and with native TRPV1 channels in rat DRG neurons. Contrary to this, currents in human DRG neurons were potentiated at all capsaicin concentrations tested after PAO treatment. These results could indicate important differences in the reduction-oxidation modulation of human TRPV1 channels in a native cellular environment.
-
Alzheimer's disease (AD) involves selective loss of basal forebrain cholinergic neurons, particularly in the nucleus basalis (NB). Similarly, Parkinson's disease (PD) might involve the selective loss of pedunculopontine tegmental nucleus (PPT) cholinergic neurons. Therefore, lesions of these functionally distinct cholinergic centers in rats might serve as models of AD and PD cholinergic neuropathologies. ⋯ Conversely, there was no microglial response within the NB after PPT lesions. Our results reveal the rostrorostral PPT-NB astrogliosis after denervation of cholinergic neurons in the PPT. This hierarchically and anatomofunctionally guided PPT-NB astrogliosis emerged following cholinergic neuronal loss greater than 17% throughout the overall rostrocaudal PPT dimension.
-
Hydrogen sulfide (H(2)S), formed by multiple enzymes, including cystathionine-γ-lyase (CSE), targets Ca(v)3.2 T-type Ca(2+) channels (T channels) and transient receptor potential ankyrin-1 (TRPA1), facilitating somatic pain. Pancreatitis-related pain also appears to involve activation of T channels by H(2)S formed by the upregulated CSE. Therefore, this study investigates the roles of the Ca(v)3.2 isoform and/or TRPA1 in pancreatic nociception in the absence and presence of pancreatitis. ⋯ In contrast, AP18 and knockdown of TRPA1 had no significant effect on the cerulein-induced referred hyperalgesia, although they significantly potentiated the antihyperalgesic effect of NNC at a subeffective dose. TRPA1 but not Ca(v)3.2 in the dorsal root ganglia was downregulated at a protein level in mice with cerulein-induced pancreatitis. The data indicate that TRPA1 and Ca(v)3.2 mediate the exogenous H(2)S-induced pancreatic nociception in naïve mice and suggest that, in the mice with pancreatitis, Ca(v)3.2 targeted by H(2)S primarily participates in the pancreatic pain, whereas TRPA1 is downregulated and plays a secondary role in pancreatic nociceptive signaling.