Journal of neuroscience research
-
Canine degenerative myelopathy (DM) is a progressive, adult-onset, multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. ⋯ These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, nor of their axons. Axonal loss in thoracic sensory roots and sensory neuron death suggest that sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS.
-
Cochlear ablation triggers cellular and molecular reactions in the adult mammalian central auditory system, leading to complex rearrangements in the cellular networks of the auditory brainstem. The role of microglial cells in these processes is largely unknown. We analyzed morphological and molecular responses as well as cellular affiliations of microglia in the auditory brainstem 1 and 7 days after unilateral sensory deafferentation of the cochlear nucleus. ⋯ By covisualizing cytological markers such as NeuN, GFAP, CD11b, vGluT-1, GAD-65, and Gap43 with the prominent MAP kinases ERK1/2 and p38, we show that MAPK signaling is affected by sensory deafferentation in microglia but not in astroglia or in neurons. In conclusion, microglia displaying MAPK signaling appear to contribute to an adaptive response in central auditory regions that was directly or indirectly affected by sensory deafferentation. Moreover, microglial cells are temporally and spatially in place to participate in synaptogenesis inside VCN.
-
The blood-brain barrier (BBB) is an anatomical microstructural unit, with several different components playing key roles in normal brain physiological regulation. Formed by tightly connected cerebrovascular endothelial cells, its normal function depends on paracrine interactions between endothelium and closely related glia, with several recent reports stressing the need to consider the entire gliovascular unit in order to explain the underlying cellular and molecular mechanisms. ⋯ This Mini-Review addresses the current literature on possible factors affecting gliovascular units and contributing to posttraumatic BBB dysfunction, including neuroinflammation and disturbed transport mechanisms along with altered permeability and consequent posttraumatic edema. Key mechanisms and its components are described, and promising lines of basic and clinical research are identified, because further knowledge on BBB pathological interference should play a key role in understanding TBI and provide a basis for possible therapeutic targets in the near future, whether through restoration of normal BBB function after injury or delivering drugs in an increased permeability context, preventing secondary damage and improving functional outcome.
-
Comparative Study
Reducing hemorrhagic complication by dabigatran via neurovascular protection after recanalization with tissue plasminogen activator in ischemic stroke of rat.
This study assesses the risks and benefits of tissue plasminogen activator (tPA) treatment under oral anticoagulation with dabigatran compared with warfarin or vehicle control in transient middle cerebral artery occlusion (tMCAO). After pretreatment with warfarin (0.2 mg/kg/day), dabigatran (20 mg/kg/day), or vehicle (0.5% carboxymethyl cellulose sodium salt) for 7 days, tMCAO was induced for 120 min, followed by reperfusion and tPA (10 mg/kg/10 ml). Clinical parameters, including cerebral infarction volume, hemorrhagic volume, and blood coagulation, were examined. ⋯ Furthermore, a remarkable activation of MMP-9 in the ipsilateral warfarin-pretreated rat brain was greatly reduced in dabigatran-pretreated rats. The present study reveals that the mechanism of intracerebral hemorrhage with warfarin-pretreatment plus tPA in ischemic stroke rats is the dissociation of the neurovascular unit, including the pericyte. Neurovascular protection by dabigatran, which was first shown in this study, could partially explain the reduction in hemorrhagic complication by dabigatran reported from clinical study.
-
Cervical nerve root injury commonly leads to radicular pain. Normal sensation relies on regulation of extracellular glutamate in the spinal cord by glutamate transporters. The goal of this study was to define the temporal response of spinal glutamate transporters (glial glutamate transporter 1 [GLT-1], glutamate-aspartate transporter [GLAST], and excitatory amino acid carrier 1) following nerve root compressions that do or do not produce sensitivity in the rat and to evaluate the role of glutamate uptake in radicular pain by using ceftriaxone to upregulate GLT-1. ⋯ Within 1 day after ceftriaxone treatment (day 2), mechanical allodynia began to decrease; both mechanical allodynia and thermal hyperalgesia were attenuated (P < 0.006) by day 7. Ceftriaxone also reduced (P < 0.024) spinal GFAP and GLAST expression, and neuronal hyperexcitability in the spinal dorsal horn, restoring the proportion of spinal neurons classified as wide dynamic range to that of normal. These findings suggest that nerve root-mediated pain is maintained jointly by spinal astrocytic reactivity and neuronal hyperexcitability and that these spinal modifications are associated with reduced glutamate uptake by GLT-1.