Journal of neuroscience research
-
Recently there is widespread interest in women's underrepresentation in science, technology, engineering, and mathematics (STEM); however, progress toward gender equality in these fields is slow. More alarmingly, these gender disparities worsen when examining women's representation within STEM departments in academia. While the number of women receiving postgraduate degrees has increased in recent years, the number of women in STEM faculty positions remains largely unchanged. ⋯ Merely the presence of gender-biased cues in physical spaces targeted toward men (e.g., "geeky" décor) can foster a sense of not belonging in STEM. We describe the following three factors that likely contribute to gender inequalities and women's departure from academic STEM fields: (a) numeric underrepresentation and stereotypes, (b) lack of supportive social networks, and (c) chilly academic climates. We discuss potential solutions for these problems, focusing on National Science Foundation-funded ADVANCE organizational change interventions that target (a) recruiting diverse applicants (e.g., training search committees), (b) mentoring, networking, and professional development (e.g., promoting women faculty networks); and (c) improving academic climate (e.g., educating male faculty on gender bias).
-
Melatonin is a neurohormone secreted from the pineal gland and has a wide-ranging regulatory and neuroprotective role. It has been reported that melatonin level is disturbed in some neurological conditions such as stroke, Alzheimer's disease, and Parkinson's disease, which indicates its involvement in the pathophysiology of these diseases. Its properties qualify it to be a promising potential therapeutic neuroprotective agent, with no side effects, for some neurological disorders. This review discusses and localizes the effect of melatonin in the pathophysiology of some diseases.
-
Current events within the military and professional sports have resulted in an increased recognition of the long-term and debilitating consequences of traumatic brain injury. Mild traumatic brain injury accounts for the majority of head injuries, and posttraumatic headache is the most common adverse effect. It is estimated that between 30% to 90% of traumatic brain injuries result in posttraumatic headache, and for a significant number of people this headache disorder can continue for up to and over a year post injury. ⋯ There are surprisingly few preclinical studies that have investigated overlapping mechanisms between posttraumatic headache and migraine, especially considering the prevalence and debilitating nature of posttraumatic headache. Given this context, posttraumatic headache is a field with many emerging opportunities for growth. The frequency of posttraumatic headache in the general and military population is rising, and further preclinical research is required to understand, ameliorate, and treat this disabling disorder. © 2017 Wiley Periodicals, Inc.
-
Chronic pain is a global problem that has reached epidemic proportions. An estimated 20% of adults suffer from pain, and another 10% are diagnosed with chronic pain each year (Goldberg and McGee, ). ⋯ This review discusses common animal models used to recapitulate clinical chronic pain conditions (such as neuropathic, inflammatory, and visceral pain) and the methods for assessing the sensory and affective components of pain in animals. We also discuss the advantages and limitations of modeling chronic pain in animals as well as highlighting strategies for improving the predictive validity of preclinical pain studies. © 2016 Wiley Periodicals, Inc.
-
Neurodevelopmental and psychiatric disorders, including autism spectrum disorder and schizophrenia, are complex and heterogeneous disorders that affect a large portion of the world's population. While the causes are still poorly understood, currently available treatments are limited; the development of rational therapeutics based on an understanding of the etiology and pathogenesis of the disease is imperative. The breakthrough technology of deriving induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of healthy subjects or patients, offers an unprecedented opportunity to recapitulate both normal and pathological development of human tissue, thereby opening up a new avenue for disease modeling and drug development in a more genetically tractable and disease-relevant system. Here, I review the recent progress in the use of human iPSCs for modeling neurodevelopmental and psychiatric disorders and developing novel therapeutic strategies, and discuss challenges in this rapidly moving field. © 2017 Wiley Periodicals, Inc.