Journal of neuroscience research
-
There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP(2) ) modulate TRPV1 and TRPA1 activities. Because inflammation results in PIP(2) depletion, persisting for long periods (hours to days) in pain models and in the clinic, we examined whether chronic depletion and accumulation of PIP(2) affect capsaicin (CAP) and mustard oil (MO) responses. In addition, we wanted to evaluate whether the effects of PIP(2) depend on TRPV1 and TRPA1 coexpression and whether the PIP(2) actions vary in expression cells vs. sensory neurons. ⋯ Chronic effect of PIP(2) on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP(2) levels regulate magnitude of CAP and MO responses as well as MO tachyphylaxis. This regulation depends on coexpression profile of TRPA1 and TRPV1 and cell type.
-
Myosin light chain kinase (MLCK) plays an important role in the reorganization of the cytoskeleton, leading to disruption of vascular barrier integrity in multiple organs, including the blood-brain barrier (BBB), after traumatic brain injury (TBI). MLCK has been linked to transforming growth factor (TGF) and rho kinase signaling pathways, but the mechanisms regulating MLCK expression following TBI are not well understood. Albumin leaks into the brain parenchyma following TBI, activates glia, and has been linked to TGF-β receptor signaling. ⋯ Inhibition of p38 MAPK, but not ERK, JNK, or rho kinase, also prevented this increase. These results are further evidence of a role of MLCK in the mechanisms of BBB compromise following TBI and identify astrocytes as a cell type, in addition to endothelium in the BBB, that expresses MLCK. These findings implicate albumin, acting through p38 MAPK, in a novel mechanism by which activation of MLCK following TBI may lead to compromise of the BBB.
-
Increasing evidence has shown that β-amyloid (Aβ) induces hyperphosphorylation of tau and contributes to Aβ toxicity. Recently, tau hyperphosphorylation by glycogen synthase kinase-3β (GSK-3β) activation has been emphasized as one of the pathogenic mechanisms of Alzheimer's disease (AD). The phosphoinositide 3 kinase (PI3K)/Akt pathway is known as an upstream element of GSK-3β. ⋯ The neuroprotective effects of AS extract against Aβ(1-42) -induced neurotoxicity and tau hyperphosphorylation were blocked by LY294002 (10 μM), a PI3K inhibitor. In addition, AS extract reversed the Aβ(1-42) -induced decrease in phosphorylation cyclic AMP response element binding protein (CREB), which could be blocked by the PI3K inhibitor. These results suggest that AS-mediated neuroprotection against Aβ toxicity is likely mediated by the PI3K/Akt/GSK-3β signal pathway.
-
Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in wound healing in the damaged central nervous system. To examine effects of the TGF-β signaling inhibition on formation of scar tissue and axonal regeneration, the small molecule inhibitor of type I TGF-β receptor kinase LY-364947 was continuously infused in the lesion site of mouse brain after a unilateral transection of the nigrostriatal dopaminergic pathway. At 2 weeks after injury, the fibrotic scar comprising extracellular matrix molecules including fibronectin, type IV collagen, and chondroitin sulfate proteoglycans was formed in the lesion center, and reactive astrocytes were increased around the fibrotic scar. ⋯ Although leukocytes and serum IgG were observed within the fibrotic scar in the injured brain, they were almost absent in the injured and LY-364947-treated brain. At 2 weeks after injury, tyrosine hydroxylase (TH)-immunoreactive fibers barely extended beyond the fibrotic scar in the injured brain, but numerous TH-immunoreactive fibers regenerated over the lesion site in the LY-364947-treated brain. These results indicate that inhibition of TGF-β signaling suppresses formation of the fibrotic scar and creates a permissive environment for axonal regeneration.
-
The excitatory synapses on the jaw-closing (JC) motoneurons mediate the neuronal input that ensures smooth and rhythmic movements of the jaw. Recently, we have shown that the neurotransmitter phenotype of the inhibitory boutons onto JC motoneurons shifts from GABA to glycine, and new inhibitory synapses onto JC motoneurons are continuously formed during postnatal development (Paik et al. [2007] J. Comp. ⋯ To test whether the developmental pattern of the excitatory synapses onto JC motoneurons differs from that of the inhibitory synapses, we studied the distribution of glutamate-immunopositive boutons onto the rat JC motoneurons during postnatal development by using a combination of retrograde labeling with horseradish peroxidase (HRP), postembedding immunogold staining, and quantitative ultrastructural analysis. The analysis of 175, 281, and 465 boutons contacting somata of JC motoneurons at postnatal days P2, P11, and P31, respectively, revealed that the number of glutamate-immunopositive (Glut(+)) boutons increased by 2.6 times from P2 to P11 and showed no significant change after that, whereas the length of apposition of these boutons increased continuously from P2 to P31, suggesting that the time course for the development of Glut(+) boutons differed from that for Glut(-) boutons, most of which were immunopositive for GABA and/or glycine. Our findings indicate that excitatory and inhibitory synapses onto JC motoneurons exhibit distinctly different developmental patterns that may be closely related to the maturation of the masticatory system.