Journal of neuroscience research
-
This study aimed to explore the dynamic diffusion tensor imaging (DTI) of changes in spinal cord contusion using a canine model of injury involving rostral and caudal levels. In this study, a spinal cord contusion model was established in female dogs using a custom-made weight-drop lesion device. DTI was performed on dogs with injured spinal cords (n=7) using a Siemens 3.0T MRI scanner at pre-contusion and at 3 h, 24 h, 6 weeks and 12 weeks post-injury. ⋯ The DTI parameters after contusion vary. However, the curves of ADC, MD, and RD were nearly similar and the FA curve was distinct. All the DTI parameters were affected by distance and time.
-
Electrical stimulation (ES) to promote corticospinal tract (CST) repair after spinal cord injury (SCI) is underinvestigated. This study is the first to detail intracortical ES of the injured CST. We hypothesize that cortical ES will promote CST collateralization and regeneration, prevent dieback, and improve recovery in an SCI rat model. ⋯ No difference in axonal regeneration was found between groups, nor was there any difference in functional recovery. Cortical ES of the injured CST results in increased collateral sprouting and influences neuroplasticity depending on the ES parameters used. Further investigation regarding optimal parameters and its functional effects is required.
-
To guide development of safety equipment that reduces sports-related head injuries, we sought to enhance predictive relationships between head movement and acute axonal injury severity. The severity of traumatic brain injury (TBI) is influenced by the magnitude and direction of head kinematics. Previous studies have demonstrated correlation between rotational head kinematics and symptom severity in the adult. ⋯ Rotational Work (RotWork) was the best significant predictor of traumatic axonal injury in both newborn and pre-adolescent piglets following head rotations in the axial, coronal, and sagittal planes. An improvement over current metrics, we find that RotWork, which incorporates head rotation rate, direction, and brain shape, significantly enhanced acute traumatic axonal injury prediction. For similar injury extent, the RotWork threshold is lower for the newborn piglet than the pre-adolescent.
-
Current events within the military and professional sports have resulted in an increased recognition of the long-term and debilitating consequences of traumatic brain injury. Mild traumatic brain injury accounts for the majority of head injuries, and posttraumatic headache is the most common adverse effect. It is estimated that between 30% to 90% of traumatic brain injuries result in posttraumatic headache, and for a significant number of people this headache disorder can continue for up to and over a year post injury. ⋯ There are surprisingly few preclinical studies that have investigated overlapping mechanisms between posttraumatic headache and migraine, especially considering the prevalence and debilitating nature of posttraumatic headache. Given this context, posttraumatic headache is a field with many emerging opportunities for growth. The frequency of posttraumatic headache in the general and military population is rising, and further preclinical research is required to understand, ameliorate, and treat this disabling disorder. © 2017 Wiley Periodicals, Inc.
-
Chronic pain is a global problem that has reached epidemic proportions. An estimated 20% of adults suffer from pain, and another 10% are diagnosed with chronic pain each year (Goldberg and McGee, ). ⋯ This review discusses common animal models used to recapitulate clinical chronic pain conditions (such as neuropathic, inflammatory, and visceral pain) and the methods for assessing the sensory and affective components of pain in animals. We also discuss the advantages and limitations of modeling chronic pain in animals as well as highlighting strategies for improving the predictive validity of preclinical pain studies. © 2016 Wiley Periodicals, Inc.