Journal of neuroscience research
-
Comparative Study
N-acetylcysteine prevents beta-amyloid toxicity by a stimulatory effect on p35/cyclin-dependent kinase 5 activity in cultured cortical neurons.
Although previous studies have indicated that the neuroprotective effect of N-acetylcysteine (NAC) required activation of the Ras-extracellular-signal-regulated kinase (ERK) pathway, the detailed mechanisms and signal cascades leading to activation ERK are not clear. In the present study, we investigated the effect of NAC on A beta(25-35)-induced neuronal death. Pretreatment of neurons with NAC 1 hr before application of A beta prevented A beta-mediated cell death. ⋯ The effect of NAC was completely blocked by Cdk5 inhibitors. NAC reversed the A beta(25-35)-induced decrease in the expression of Bcl-2, which could be blocked by the MAPK kinase (MEK) inhibitor or Cdk5 inhibitors. These results suggest that NAC-mediated neuroprotection against A beta toxicity is likely mediated by the p35/Cdk5-ERKs-Bcl-2 signal pathway.
-
Diffusion tensor imaging (DTI) has the potential to reveal disruption of white matter microstructure in chronically injured spinal cords. We quantified fractional anisotropy (FA) and mean diffusivity (MD) to demonstrate retrograde Wallerian degeneration (WD) of cranial corticospinal tract (CST) in cervical spinal cord injury (SCI). Twenty-two patients with complete cervical SCI in the chronic stage were studied with DTI along with 13 healthy controls. ⋯ Statistically significant inverse FA and MD changes were noted in corona radiata, indicating some restoration of spared white matter tracts. Temporal changes in the DTI metrics suggest progressing degeneration in different regions of CST. These spatiotemporal changes in DTI metrics suggest continued WD in injured fibers along with simultaneous reorganization of spared white matter fibers, which may contribute to changing neurological status in chronic SCI patients.
-
Memory impairment is one of the most significant residual deficits following traumatic brain injury (TBI) and is among the most frequent complaints heard from patients and their relatives. It has been reported that the hippocampus is particularly vulnerable to TBI, which results in hippocampus-dependent cognitive impairment. There are different regions in the hippocampus, and each region is composed of different cell types, which might respond differently to TBI. ⋯ Further quantitative analysis shows that the number of newborn immature neurons in the dentate gyrus is dramatically decreased in the ipsilateral hemisphere compared with the contralateral side. Collectively, our data demonstrate the selective death of newborn immature neurons in the hippocampal dentate gyrus following moderate injury with CCI in mice. This selective vulnerability of newborn immature dentate neurons may contribute to the persistent impairment of learning and memory post-TBI and provide an innovative target for neuroprotective treatment strategies.
-
Studies have shown that cytokines released following CNS injury can affect the supportive or cytotoxic functions of microglia. Interleukin-6 (IL-6)-family cytokines are among the injury factors released. To understand how microglia respond to IL-6 family cytokines, we examined the effects of ciliary neurotrophic factor (CNTF) and IL-6 on primary cultures of rat microglia. ⋯ To understand better the signaling mechanisms responsible for the opposite responses of these IL-6-family cytokines, we examined STAT-3 and ERK phosphorylation in CNTF- and IL-6-stimulated microglia. IL-6 markedly increases STAT-3 and ERK phosphorylation after 20 min of treatment, whereas these signal transducers are weakly stimulated by CNTF across a range of doses. We conclude that CNTF modifies microglial activation to support neuronal survival and that IL-6 enhances their capacity to do harm, as a result of different modes of intracellular signaling.
-
Neonatal hypoxia-ischemia (HI) induces immediate early gene (IEG) c-fos expression as well as neuron death. The precise role of IEGs in neonatal HI is unclear. We investigated the temporal and spatial patterns of c-Fos expression in postnatal day 7 mice after unilateral carotid ligation and exposure to 8% oxygen. mRNA levels of c-fos quantitated by real-time polymerase chain reaction (PCR) increased nearly 40-fold (log 1.2 +/- 0.4) in the ipsilateral hippocampus 3 hr following neonatal HI, then returned to basal levels within 12 hr, although no change was observed in c-jun mRNA. ⋯ Double-labeling experiments showed c-Fos and cleaved caspase-3 immunoreactivity localized in spatially distinct neuron subpopulations. Prominent c-Fos immunoreactivity was observed in surviving CA2-3 and external granular DG neurons, and robust cleaved caspase-3 immunoreactivity was observed in pyknotic CA1, CA2-3, and subgranular DG neurons. The differential expression of c-Fos in HI-resistant hippocampal subpopulations vs. cleaved caspase-3 in dying neurons suggests a neuroprotective role for c-Fos expression in neonatal HI.