Journal of neuroscience research
-
Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. ⋯ Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.
-
Neuropathic pain is one of the most inextricable problems encountered in clinics, because few facts are known about its etiology. Nerve injury often leads to allodynia and hyperalgesia, which are symptoms of neuropathic pain. The aim of this study was to understand some molecular and electrophysiological mechanisms of neuropathic pain after chronic constriction of the saphenous nerve (CCS) in mice. ⋯ In combination with the skin-nerve preparation, this model showed a decrease in functional receptive fields downstream to the injury and the apparition of A-fiber ectopic discharges. In conclusion, CCS injury induced behavioral, molecular, and electrophysiological rearrangements that might help us in better understanding the peripheral mechanisms of neuropathic pain. This model takes advantage of the possible use in the future of genetically modified mice and of an exclusively sensory nerve for a comprehensive study of peripheral mechanisms of neuropathic pain.
-
Erythropoietin (EPO) is a hormone that is neuroprotective in models of neurodegenerative diseases. This study examined whether EPO can protect against neuronal death in the CA1 region of the rat hippocampus following global cerebral ischemia. Recombinant human EPO was infused into the intracerebral ventricle either before or after the induction of ischemia produced by using the four-vessel-occlusion model in rat. ⋯ EPO also enhanced the CA1 level of brain-derived neurotrophic factor. Finally, we determined that ERK activation played minor roles in EPO-mediated neuroprotection. These studies demonstrate that a single injection of EPO ICV up to 20 min after global ischemia is an effective neuroprotective agent and suggest that EPO is a viable candidate for treating global ischemic brain injury.
-
In vivo longitudinal diffusion tensor imaging (DTI) of rodent spinal cord injury (SCI) was carried out over a period of eight weeks post-injury. A balanced, rotationally invariant, alternating gradient polarity icosahedral diffusion encoding scheme was used for an unbiased estimation of the DTI metrics. The fractional anisotropy (FA), diffusivities along (longitudinal), and perpendicular (transverse) to the fiber tracts, were estimated for the ventral, dorsal, and lateral white matter. ⋯ However, these differences gradually disappeared away from the epicenter. The spatio-temporal changes in the DTI metrics showed a recovery pattern that is region specific. Although the temporal trends in the tissue recovery in rostral and caudal sections seem to be similar, overall the DTI metrics were observed to be closer to the normal tissue values in the caudal relative to the rostral sections (rostral-caudal asymmetry).
-
The mechanisms of hypertension-induced hypoalgesia were studied in a model of hypertension induced by adenosine receptors blockade with the non-selective antagonist 1,3-dipropyl-8-sulfophenylxanthine (DPSPX) during 7 days. Based on the positive correlation between pain thresholds and noxious-evoked expression of the c-fos protooncogene in spinal cord neurones, we used this marker of nociceptive activation of spinal neurones to evaluate the involvement of the spinal GABAergic system and the caudal ventrolateral medulla (VLM), an important inhibitory component of the supraspinal endogenous pain modulatory system. In DPSPX-treated animals, a 20% increase in blood pressure was achieved along with a decrease in Fos expression in the superficial (laminae I-II) and deep (laminae III-VII) dorsal horn. ⋯ Lesioning the VLMlat with quinolinic acid prevented the decrease in Fos expression at the spinal cord of DPSPX-hypertensive rats whereas in normotensive animals, no changes in Fos expression were detected. The present results support previous findings that hypertension is associated with a decrease of nociceptive activation of spinal cord neurones, through descending inhibition exerted by the VLMlat. This study further shows that during hypertension a decrease in the expression of GABAB receptors in nociceptive spinal neurones occurs, probably due to changes in the local GABAergic inhibitory system.