Journal of neuroscience research
-
The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. ⋯ We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
-
The midbrain ventrolateral periaqueductal gray (VL-PAG) is a key component that mediates pain modulation. Although spinal cord glial cells appear to play an important role in chronic pain development, the precise mechanisms involving descending facilitation pathways from the PAG following nerve injury are poorly understood. This study shows that cellular events that occur during glial activation in the VL-PAG may promote descending facilitation from the PAG during neuropathic pain. ⋯ Western blot analysis showed localized expression of p-p38 in the VL-PAG after CCI. P-p38 was expressed in labeled microglia of the VL-PAG but was not present in astrocytes and neurons on day 7 after CCI. These results demonstrate that CCI-induced neuropathic pain is associated with glial activation in the VL-PAG, which likely participates in descending pain facilitation through the p38 MAPK signaling pathway.
-
In rodent models of traumatic brain injury (TBI), both Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) levels increase early after injury to return later to basal levels. We have developed and characterized a rat mild fluid percussion model of TBI (mLFP injury) that results in righting reflex response times (RRRTs) that are less than those characteristic of moderate to severe LFP injury and yet increase IL-1α/β and TNFα levels. Here we report that blockade of IL-1α/β and TNFα binding to IL-1R and TNFR1, respectively, reduced neuropathology in parietal cortex, hippocampus, and thalamus and improved outcome. ⋯ There was no benefit from the combined blockades compared with individual blockades or after repeated treatments for 11 days after injury compared with one treatment at 1 hr after injury, when measured at 6 hr or 18 days, based on changes in neuropathology. There was also no further enhancement of blockade benefits after 18 days. Given that both Kineret and etanercept given singly or in combination showed similar beneficial effects and that TNFα also has a gliotransmitter role regulating AMPA receptor traffic, thus confounding effects of a TNFα blockade, we chose to focus on a single treatment with Kineret.
-
Previous studies have demonstrated that glutamate plays an important role in the development of pathological pain. This study investigates the expression changes of glutamate and the roles of different types of glutamate receptors in the red nucleus (RN) in the development of neuropathic allodynia induced by spared nerve injury (SNI). Immunohistochemistry indicated that glutamate was constitutively expressed in the RN of normal rats. ⋯ However, microinjection of the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3(1H,4H)-dione or the mGluR antagonist (±)-α-methyl-(4-carboxyphenyl) glycine into the RN significantly increased the PWT and alleviated SNI-induced mechanical allodynia. These findings suggest that RN glutamate is involved in regulating neuropathic pain and facilitates the development of SNI-induced neuropathic allodynia. The algesic effect of glutamate is transmitted by the non-NMDA glutamate receptor and mGluRs.
-
The incidence of dementia and obstructive sleep apnea (OSA) increases with age. Late-onset Alzheimer's disease (AD) is an irreversible neurodegenerative disease of the elderly characterized by amyloid β (Aβ) plaques and neurofibrillary tangles. The disease involves widespread synaptic loss in the neocortex and the hippocampus. ⋯ Cognitive impairment, even in the absence of manifest dementia, is an important independent predictor of mortality. However, several pathophysiological mechanisms in OSA are reversible with appropriate therapy. OSA, therefore, is a modifiable risk factor of cognitive dysfunction, and treating OSA prior to mild cognitive impairment may be an effective prevention strategy to reduce risk for cognitive decline and AD in middle-aged persons and the elderly.