Neuroscience letters
-
Neuroscience letters · Oct 1995
Inhibition by spinal morphine of the tail-flick response is attenuated in rats with nerve ligation injury.
Nerve ligation injury in rats produces increased sensitivity and exaggerated responses to nociceptive stimuli (hyperalgesia) as well as nociceptive responses to normally innocuous stimuli (allodynia) analogous to clinical conditions of neuropathic pain. However, the effect of nerve injury on acute nociception has not been extensively studied. Nerve ligation injury was produced by unilateral ligation of the L5 and L6 spinal roots of the sciatic nerve of male Sprague-Dawley rats. ⋯ Antinociception was readily reversed by naloxone (5 mg/kg, i.p.) in both groups. These data indicate that nerve ligation injury reduces the potency and efficacy of i.th. morphine. While the reasons for this loss of morphine activity in nerve injured animals are unknown, it is possible to speculate that (a) degeneration of primary afferents subsequent to nerve ligation injury might result in a loss of presynaptic opioid (mu?) receptors in the dorsal horn, thereby reducing the antinociceptive activity of morphine at the spinal level; (b) changes in the efficiency of post-receptor transduction may occur following nerve injury which can reduce opioid efficacy; (c) changes in levels of spinal neurotransmitters (e.g., cholecystokinin) may act to diminish opioid action; or (d) sustained afferent input from the site of the injury may be important in limiting the activity of opioids.
-
Neuroscience letters · Oct 1995
The loss of antinociceptive efficacy of spinal morphine in rats with nerve ligation injury is prevented by reducing spinal afferent drive.
Nerve ligation injury in rats may represent a useful model of some clinical neuropathic pains. Activation of N-methyl-D-aspartate (NMDA) receptors may maintain central sensitivity and contribute to neuropathic pain. Here, nerve injury was produced by unilateral ligation of the L5 and L6 spinal roots of the sciatic nerve of rats. ⋯ Bupivacaine (0.2 ml, 0.75% w/v) at the site of injury also significantly increased the efficacy of morphine (100 +/- 0% MPE) without affecting tail flick latency alone. Bupivacaine administered at the site of injury also produced a significant antiallodynic effect of 94 +/- 7.4% MPE. The reduction in antinociceptive efficacy of i.th. morphine in nerve injured rats may be due, in part, to an ongoing spontaneous activity initiated by ectopic foci at the site of injury, and possible NMDA receptor-mediated activity of spinal neurons.