Neuroscience letters
-
Neuroscience letters · Jan 2015
Glutamic acid decarboxylase levels in the cochlear nucleus of rats with acoustic trauma-induced chronic tinnitus.
Tinnitus is the perception of phantom sounds, a phenomenon believed to be due to abnormal neuronal activity in auditory regions of the CNS such as the brainstem cochlear nucleus (CN). One possible mechanism for the abnormal neuronal activity in the CN, supported by recent animal studies, is a decrease in GABAergic inhibition. ⋯ At 22 weeks following noise trauma or sham treatment, the levels of GAD in the dorsal and ventral CN were not significantly different. This result suggests that acoustic trauma that can cause chronic tinnitus is not associated with changes in GAD in the CN at 22 weeks post-exposure.
-
Neuroscience letters · Jan 2015
Regional differences of repeatability on visual analogue scale with experimental mechanical pain stimuli.
Pain-VAS is quite subjective as a scale, but has a tendency to assume differences in repeatability in accordance with perceived pain intensity. The aim of the present study was to investigate the repeatability of regional differences with ratings of pain-VAS. Three experimental mechanical stimuli were applied to twenty seven healthy volunteers across four sessions over four weeks within individuals. ⋯ These results showed that the CVs of repeated measurement with electric balance were consistent regardless of stimulus intensity, in contrast, CVs of pain-VAS decreased with greater pain rating averaged by repeated measurement. These results suggest that a low rating in pain-VAS is inherently less objective, indicating poor repeatability. In contrast, a high rating in pain-VAS is more objective with better repeatability for experimental pain perception.
-
Neuroscience letters · Jan 2015
The intrathecal administration of losartan, an AT1 receptor antagonist, produces an antinociceptive effect through the inhibiton of p38 MAPK phosphorylation in the mouse formalin test.
We have recently reported that an intrathecal (i.t.) administration of angiotensin II (Ang II) into mice induces a nociceptive behavior accompanied by the activation of p38 MAPK signaling via AT1 receptors (Nemoto et al., 2013, Mol. Pain 9, 38). These results suggested that Ang II participates in the facilitation of nociceptive transmission in the spinal cord. ⋯ In the superficial dorsal horn of the spinal cord (laminae I and II), the fluorescence intensities for Ang II and phospho-p38 MAPK were both significantly increased on the ipsilateral side 3 min after the injection of formalin compared to saline-treated controls. Moreover, the increase of phospho-p38 MAPK fluorescence intensity was significantly inhibited by the i.t. administration of losartan (54.8 nmol) 5 min prior to formalin. These results indicate that losartan produces an antinociceptive effect through the inhibition of p38 MAPK phosphorylation in the mouse formalin test and that Ang II may act as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information.
-
Neuroscience letters · Jan 2015
Rosuvastatin attenuated the existing morphine tolerance in rats with L5 spinal nerve transection through inhibiting activation of astrocytes and phosphorylation of ERK42/44.
Recent studies suggested that statins have anti-inflammatory effects beyond their lipid-lowering properties. In the present study, we sought to investigate whether rosuvastatin could alleviate morphine tolerance by attenuating the glia mediated neuroinflammation in the spinal cord. Using a rat model of L5 spinal nerve transection, on day 8 after surgery morphine (10 mg/kg) was injected subcutaneously twice daily for consecutive 10 days. ⋯ Rosuvastatin administration for 5 days could restore morphine antinociceptive effect significantly. Additionally, the activation of astrocytes, the phosphorylation of extracellular signal-regulated kinase 42/44 (ERK(42/44)) and the expressions of TNFα and IL-1β were inhibited significantly by rosuvastatin. Our data suggested that rosuvastatin was a promising choice to treat neuropathic pain in combination with morphine.
-
Neuroscience letters · Jan 2015
Intra-articular administration of an antibody against CSF-1 receptor reduces pain-related behaviors and inflammation in CFA-induced knee arthritis.
Several studies have shown that blockade of colony stimulating factor-1 (CSF-1) or its receptor (CSF-1R) inhibits disease progression in rodent models of rheumatoid arthritis (RA); however, the role of the CSF-1/CSF-1R pathway in RA-induced pain and functional deficits has not been studied. Thus, we examined the effect of chronic intra-articular administration of a monoclonal anti-CSF-1R antibody (AFS98) on spontaneous pain, knee edema and functional disabilities in mice with arthritis. Unilateral arthritis was produced by multiple injections of complete Freund's adjuvant (CFA) into the right knee joint of adult male ICR mice. ⋯ Intra-articular treatment with anti-CSF-1R antibody significantly increased horizontal exploratory activity and vertical rearing as well as reduced spontaneous flinching behavior and knee edema as compared to CFA-induced arthritis mice treated with PBS. Treatment with this antibody neither significantly affect mouse body weight nor the number of peripheral leukocytes. These results suggest that blockade of CSF-1R at the initial injury site (joint) could represent a therapeutic alternative for improving the functional disabilities and attenuating pain and inflammation in patients with RA.