Neuroscience letters
-
Neuroscience letters · Feb 2016
Effect of spinal monoaminergic neuronal system dysfunction on pain threshold in rats, and the analgesic effect of serotonin and norepinephrine reuptake inhibitors.
Dysfunction in the central serotonin (5-HT) and norepinephrine (NE) systems cause depression and pain. Descending spinal pain modulatory pathways are important in the analgesic mechanisms of antidepressants, particularly serotonin and norepinephrine reuptake inhibitors (SNRIs). While many non-clinical studies have demonstrated the roles of central monoaminergic systems in pain, there is little evidence to illuminate the direct contribution of spinal descending pain modulatory systems independently of depressive-like behavior. ⋯ Lumbar-intrathecal reserpine did not deplete brain monoamines or bring about depressive-like behavior in the forced swim test. Spinal monoamines depletion-induced pain sensitivity was ameliorated by lumbar-intrathecal administration of the SNRIs (duloxetine and milnacipran) in dose-dependent manners. These suggest that increased pain sensitivity could be induced by dysfunction solely of the descending pain modulatory system, regardless of depressive-like behavior, and lumbar-intrathecal administration of SNRIs could ameliorate the pain sensitivity which might be mediated by affecting the descending pain modulatory system in the spinal cord, not via their antidepressant effects.
-
Neuroscience letters · Feb 2016
Electrophysiological evidence for the existence of a rare population of C-fiber low threshold mechanoreceptive (C-LTM) neurons in glabrous skin of the rat hindpaw.
The mammalian skin in innervated by distinct classes of low-threshold mechanoreceptive (LTM) primary afferent neurons that are classified as Aβ-, Aδ- or C-LTMs according to their axonal conduction velocities (CVs). C-LTMs are thought to signal pleasant and erotic touch sensations in humans, and to exist only in the hairy skin of primates and other species. Using intracellular recordings from rat L4/L5 dorsal root ganglion (DRG) neurons that were classified in vivo as C-nociceptors or C-LTMs, according to their dorsal root CVs and their responses to mechanical and thermal stimuli, the present study provides the first electrophysiological evidence that C-LTMs exist in the glabrous skin of the rat's hindpaw. ⋯ They also exhibited faster action potential and afterhyperpolarization kinetics than C-HTMs. The present study lends support to previous studies that have provided indirect evidence for the presence of C-LTMs in glabrous skin. If C-LTMs are present in human glabrous skin, they may, in this type of skin, represent a novel peripheral neuronal substrate for the pleasant/social touch sensation, and account for or contribute to touch hypersensitivity after injury.