Neuroscience letters
-
Neuroscience letters · Sep 2018
The left central nucleus of the amygdala contributes to mechanical allodynia and hyperalgesia following right-sided peripheral nerve injury.
The left and right central nucleus of the amygdala (CeA) exert asymmetric pronociceptive functions. In the setting of a transient noxious stimulus or persistent inflammatory pain, neuronal activity increases in the right but not left CeA, regardless of side of injury. Much less is known regarding this lateralization with respect to the behavioral manifestations of persistent neuropathic pain. ⋯ Following right-sided SNI, we observed a modality-dependent effect: mechanical allodynia was attenuated by inactivation of the left but neither the right nor bilateral CeA, mechanical hyperalgesia was attenuated by left, right and bilateral intra-CeA lidocaine, and cold allodynia was unaffected. These data suggest that CeA-mediated control of neuropathic pain is not strictly limited to the right CeA as previously assumed. We conclude that functional lateralization depends on the type of pain, side of injury and the sensory modality, and that the left CeA contributes to mechanical allodynia and hyperalgesia after peripheral nerve injury to the right side of the body.
-
Neuroscience letters · Sep 2018
Effects of nerve growth factor neutralization on TRP channel expression in laser-captured bladder afferent neurons in mice with spinal cord injury.
Nerve growth factor (NGF) is reportedly involved in the changes in C-fiber bladder afferent pathways that induce detrusor overactivity (DO) following spinal cord injury (SCI). This study examined the roles of NGF in TRP channel expression in bladder afferent neurons in mice with SCI using laser-capture microdissection (LCM) methods. Spinal intact (SI) and SCI mice were divided into 3 groups: (1) SI with vehicle treatment; (2) SCI with vehicle treatment; and (3) SCI with anti-NGF antibody. ⋯ The expression level of TRPC3 and TRPC6 in vehicle-treated SCI mice was lower than in SI mice. However, in SCI mice treated with anti-NGF antibody, the mRNA expression of TRPV1 was lower, and the mRNA levels of TRPC3 and TRPC6 were higher than in vehicle-SCI mice. These results suggest that the NGF-dependent changes in specific TRP channel genes, such as TRPV1, TRPC3, and TRPC6, could be involved in SCI-induced afferent hyperexcitability and DO.