Neuroscience letters
-
Neuroscience letters · Jan 2021
ReviewStroke in patients with COVID-19: Clinical and neuroimaging characteristics.
Acute cerebrovascular disease, particularly ischemic stroke, has emerged as a serious complication of infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the Coronavirus disease-2019 (COVID-19). Accumulating data on patients with COVID-19-associated stroke have shed light on specificities concerning clinical presentation, neuroimaging findings, and outcome. Such specificities include a propensity towards large vessel occlusion, multi-territory stroke, and involvement of otherwise uncommonly affected vessels. ⋯ The pathogenesis and optimal management of ischemic stroke associated with COVID-19 still remain uncertain, but emerging evidence suggest that cytokine storm-triggered coagulopathy and endotheliopathy represent possible targetable mechanisms. Some specific management issues in this population include the difficulty in identifying clinical signs of stroke in critically ill patients in the intensive care unit, as well as the need for a protected pathway for brain imaging, intravenous thrombolysis, and mechanical thrombectomy, keeping in mind that "time is brain" also for COVID-19 patients. In this review, we discuss the novel developments and challenges for the diagnosis and treatment of stroke in patients with COVID-19, and delineate the principles for a rational approach toward precision medicine in this emerging field.
-
Neuroscience letters · Jan 2021
Downregulation of metabotropic glutamate receptor 5 alleviates central sensitization by activating autophagy via inhibiting mTOR pathway in a rat model of chronic migraine.
Central sensitization is one of the important pathological mechanisms of chronic migraine (CM). Metabolic glutamate receptor 5 (mGluR5) mediates pain by activating various intracellular pathways. However, whether mGluR5 contributes to central sensitization in CM and the exact mechanism remains unclear. ⋯ In addition, the downregulation of mGluR5 activated autophagy by inhibiting the mTOR pathway. Moreover, the activation of autophagy alleviated allodynia and central sensitization in CM rats. This study identified a novel strategy for the treatment of CM; the downregulation of mGluR5 in a rat model of CM decreased the expression of the inflammatory factor interleukin-1 beta (IL-1β) and the central sensitization-associated proteins CGRP and SP by activating autophagy via inhibiting the mTOR pathway.
-
Neuroscience letters · Jan 2021
Meta AnalysisCommon and distinct patterns of gray matter alterations in borderline personality disorder and posttraumatic stress disorder: A dual meta-analysis.
Borderline personality disorder (BPD) and posttraumatic stress disorder (PTSD) are severe psychiatric disorders and often co-occur, either of the two will seriously threaten to public health. However, we lack ample evidences to understand the potential pathophysiologic mechanisms of gray matter (GM) alterations in the two disorders. ⋯ Group comparisons and conjunction analyses in BPD and PTSD identified same regions of GM volume reductions in the orbitofrontal gyrus and anterior cingulate cortex, which may provide clues for the neurobiological mechanisms and clinical diagnosis underpinning two disorders.
-
Neuroscience letters · Jan 2021
Executive function network's white matter alterations relate to Parkinson's disease motor phenotype.
Parkinson's disease (PD) patients with postural instability and gait disorder phenotype (PIGD) are at high risk of cognitive deficits compared to those with tremor dominant phenotype (TD). Alterations of white matter (WM) integrity can occur in patients with normal cognitive functions (PD-N). However, the alterations of WM integrity related to cognitive functions in PD-N, especially in these two motor phenotypes, remain unclear. ⋯ For the entire PD-N cohort, FAS verbal fluency scores positively correlated with MD in the superior longitudinal fasciculus (SLF). This study confirmed that PIGD-N phenotype has more deficits in verbal fluency task than TD-N phenotype. Additionally, our findings suggest: (1) PIGD-N shows more microstructural changes related to FAS verbal fluency task when compared to TD-N phenotype; (2) SLF plays an important role in FAS verbal fluency task in PD-N patients regardless of motor phenotypes.