Blood
-
Randomized Controlled Trial Comparative Study Clinical Trial
Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial.
In a single-center open-label prospective study, a total of 134 marrow transplant recipients with hematologic malignancies were randomly assigned to a bacterial decontamination medication using metronidazole and ciprofloxacin (n = 68) or ciprofloxacin alone (n = 66) during 5 weeks posttransplant. The development of grades II to IV acute graft-versus-host disease (GVHD) was defined as the primary study endpoint. According to the intention-to-treat, 17 patients (25%) randomized to the combined decontamination medication and 33 patients (50%) randomized to ciprofloxacin alone developed grades II to IV GVHD (P <.002). ⋯ Neither chronic GVHD nor overall survival was significantly different between the two study arms. In patients with HLA-identical sibling donors who were treated in early disease stages, the 5-year survival estimate was slightly, but not significant, higher after the combined decontamination medication (60% +/- 11%) compared with ciprofloxacin alone (46% +/- 9%). In conclusion, the present study provides evidence that antimicrobial chemotherapy targeted to intestinal anaerobic bacteria in marrow transplant recipients significantly reduces the severity of acute GVHD and supports the theory that the intestinal anaerobic bacterial microflora plays a role in the pathogenesis of acute GVHD after human marrow transplantation.
-
Multicenter Study Clinical Trial Controlled Clinical Trial
Recombinant human thrombopoietin in combination with granulocyte colony-stimulating factor enhances mobilization of peripheral blood progenitor cells, increases peripheral blood platelet concentration, and accelerates hematopoietic recovery following high-dose chemotherapy.
Lineage-specific growth factors mobilize peripheral blood progenitor cells (PBPC) and accelerate hematopoietic recovery after high-dose chemotherapy. Recombinant human thrombopoietin (rhTPO) may further increase the progenitor-cell content and regenerating potential of PBPC products. We evaluated the safety and activity of rhTPO as a PBPC mobilizer in combination with granulocyte colony-stimulating factor (G-CSF) in 29 breast cancer patients treated with high-dose chemotherapy followed by PBPC reinfusion. ⋯ In rhTPO and G-CSF mobilized patients, granulocyte (day 8 v 9, P =.0001) and platelet recovery (day 9 v 10, P =.07) were accelerated, and fewer erythrocyte (3 v 4, P =.02) and platelet (4 v 5, P =.02) transfusions were needed compared with G-CSF-mobilized patients. Peripheral blood platelet counts, following rhTPO and G-CSF, were increased by greater than 100% and the platelet content of PBPC products by 60% to 110% on the first and second days of aphereses (P <.0001) with the greatest effect seen with repeated dosing of rhTPO at 0.6 microgram/kg. rhTPO is safe and well tolerated as a mobilizing agent before PBPC collection. Mobilization with rhTPO and G-CSF, in comparison to a comparable, nonrandomized G-CSF-mobilized group of patients, decreases the number of apheresis procedures required, may accelerate hematopoietic recovery, and may reduce the number of transfusions required following high-dose chemotherapy for breast cancer.