Blood
-
Deficiencies of coagulation factors other than factor VIII and factor IX that cause bleeding disorders are inherited as autosomal recessive traits and are rare, with prevalences in the general population varying between 1 in 500 000 and 1 in 2 million for the homozygous forms. As a consequence of the rarity of these deficiencies, the type and severity of bleeding symptoms, the underlying molecular defects, and the actual management of bleeding episodes are not as well established as for hemophilia A and B. ⋯ Based upon this experience, this article reviews the genetic basis, prevalent clinical manifestations, and management of these disorders. The steps and actions necessary to improve the condition of these often neglected patients are outlined.
-
X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacterial infections. Using Btk- and Tec-deficient mice (BtkTec(-/-)) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)-treated BtkTec(-/-) mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec(-/-) recipients. ⋯ B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA.