Neuroscience
-
The experiment was designed to explore the effects and mechanism of Dilong on alleviating cyclophosphamide (CTX)-induced brain injury in mice. Fifty male SPF Kunming mice aged 6-8 weeks were randomly divided into five groups: Group A served as the control group; Group B received intraperitoneal injection of CTX; Groups C, D, and E were administered Dilong at doses of 100, 200, and 400 mg/kg respectively for 14 days after intraperitoneal injection of CTX. Results showed that after modeling, the movement speed of mice significantly decreased (P < 0.05), and the number of neurons in the hippocampus and cortex decreased. ⋯ Dilong significantly increased mitochondrial respiratory enzyme activity (P < 0.05), and the mitochondrial structure was restored to some extent. By significantly reducing NLRP3/TLR4/caspase1/pro caspase1/GSDMD (P < 0.05), it increased neuronal cell survival. This resulted in an increase in neuronal cell survival, thus exerting a protective effect on the brain.
-
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions. ⋯ This review discusses key findings related to the localization and abundance of axonal mRNAs and their translation levels, both in basal states and in response to physiological processes, such as learning and memory consolidation, as well as neurodevelopmental and neurodegenerative disorders, including Alzheimer's disease, autism spectrum disorder, and axonal injury. Moreover, we discuss the current understanding of axonal ribosomes, from their localization to the potential roles of locally translated ribosomal proteins, in the context of emerging research that highlights the regulatory roles of the ribosome in translation. Lastly, we address the main challenges and open questions for future studies.
-
Review Meta Analysis
Potential similarities in gut microbiota composition between autism spectrum disorder and neurotypical siblings: Insights from a comprehensive meta-analysis.
Previous studies have explored the differences in gut microbiota (GM) between individuals with autism spectrum disorder (ASD) and neurotypical controls. However, factors such as diet, lifestyle, and environmental exposure influence GM, leading to significant variability, even among neurotypical individuals. Comparing the GM of ASD individuals with neurotypical siblings, who share similar genes and living conditions, may offer better insights into the GM mechanisms associated with ASD. Therefore, this study aims to analyze the GM composition in ASD by comparing it to that of neurotypical siblings, potentially identifying microbiota that influence ASD. ⋯ GM composition in ASD individuals closely resembles that of neurotypical siblings, with only a few unstable differences. This suggests that other crucial bacteria or certain interacting environmental factors play a role. Further studies are needed to gather stronger evidence to uncover the differences in GM and their mechanisms in ASD people.
-
Attention deficit hyperactivity disorder (ADHD) is one of the most frequent and disabling neurodevelopmental disorders. Recent research on cerebral blood flow (CBF) has enhanced understanding of the underlying pathophysiology in neuropsychiatric disorders. This systematic review aims to synthesize the existing literature on CBF anomalies among individuals with ADHD in comparison to controls. ⋯ This review highlights diverse CBF anomalies in ADHD. The most consistently reported findings suggest hypoperfusion during resting state in prefrontal and temporal areas, along with the basal ganglia, while there is a hyperperfusion in frontal, parietal and occipital regions. Further research, including longitudinal studies, is essential to develop a comprehensive understanding of CBF implications in ADHD.
-
In this special issue to celebrate the 30th anniversary of the Uruguayan Society for Neuroscience (SNU), we find it pertinent to highlight that research on glial cells in Uruguay began almost alongside the history of SNU and contributed to the understanding of neuron-glia interactions within the international scientific community. Glial cells, particularly astrocytes, traditionally regarded as supportive components in the central nervous system (CNS), undergo notable morphological and functional alterations in response to neuronal damage, a phenomenon referred to as glial reactivity. Among the myriad functions of astrocytes, metabolic support holds significant relevance for neuronal function, given the high energy demand of the nervous system. ⋯ Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage. In this review, we focus on studies supporting the emerging paradigm that metabolic reprogramming occurs in astrocytes following damage, which is associated with their phenotypic shift to a new functional state that significantly influences the progression of pathology. Thus, exploring mitochondrial activity and metabolic reprogramming within glial cells may provide valuable insights for developing innovative therapeutic approaches to mitigate neuronal damage.