Neuroscience
-
When adult dorsal root ganglion cells are dissociated and maintained in vitro, both the small dark and the large light neurons show increases in the growth-associated protein GAP-43, a membrane phosphoprotein associated with neuronal development and plasticity. Immunoreactivity for GAP-43 appears in the cytoplasm of the cell bodies as early as 3.5 h post axotomy and is present in neurites and growth cones as soon as they develop. At early stages of culture (4 h to eight days) satellite/Schwann cells are also immunoreactive for GAP-43. ⋯ Axotomy of primary sensory neurons or the interruption of axon transport in the periphery therefore acts to trigger GAP-43 production in the cell body. The GAP-43 is transported to both the peripheral and the central terminals of the afferents. In the CNS the elevated GAP-43 levels may contribute to an inappropriate synaptic reorganization of afferent terminals that could play a role in the sensory disorders that follow nerve injury.
-
Synaptosomal-associated protein, 25 kD, (SNAP-25) is a novel protein containing a possible transition metal binding site and encoded by a neuronal-specific mRNA. We examined the distribution of SNAP-25 mRNA and protein in the hippocampal formation of the adult rat following kainic acid, colchicine, and entorhinal lesions. The results show that destruction of granule cells of the dentate gyrus and CA3 pyramidal cells did not diminish SNAP-25 immunoreactivity in the dendritic fields of these cells. ⋯ These results support the identification of SNAP-25 as a novel presynaptic protein. In addition, SNAP-25 immunoreactivity was increased in afferent fibers which project to areas adjacent to the deafferented region, and expression of SNAP-25 mRNA was increased in neurons deafferented by the lesion. Examination of SNAP-25 immunoreactivity and mRNA expression may provide a useful marker of major hippocampal pathways and of axonal plasticity in neurological disorders such as Alzheimer's disease and temporal lobe epilepsy.
-
Dysfunction of subcortical serotoninergic neurons has been implicated in some behaviour disturbances. The serotoninergic neurons in the dorsal and median raphe project widely in the brain. They innervate the olfactory bulbs and can be targets for exogenous agents attacking the olfactory epithelium and bulbs. ⋯ In spite of this the animals, as adults, had a severe serotonin depletion in the cerebral cortex and hippocampus, and showed abnormal locomotor and explorative behaviour as well as learning deficits. The neocortex was histologically intact and parameters related to other neurotransmitters such as dopamine, noradrenaline, GABA and acetylcholine showed no marked changes. A relatively selective damage to serotoninergic nuclei as a result of virus neuroinvasion through a natural portal of entry, may constitute a new pathogenetic mechanism for cortical dysfunction and behavioural deficits.
-
The regional, cellular and subcellular distribution of GABA, GABA receptors and benzodiazepine receptors was investigated by light and electron microscopy in the human lumbar spinal cord taken post-mortem from eight cases aged 20-76 years. Firstly, the regional distribution of GABA receptors and benzodiazepine receptors was studied using autoradiography following in vitro labelling of cryostat sections with tritiated ligands. This was followed by a detailed study of the cellular and subcellular distribution and localization of GABA and benzodiazepine/GABAA receptors by light and electron microscopy using immunohistochemical techniques with monoclonal antibodies to GABA and to the alpha and beta subunits of the benzodiazepine/GABAA receptor complex. ⋯ Benzodiazepine/GABAA receptors were localized within the same types of synaptic complexes in which GABA-immunoreactive axon terminals were found. In these synaptic complexes, benzodiazepine/GABAA receptor immunoreactivity was associated with presynaptic and postsynaptic membranes and on apparent non-synaptic membranes. These results show a high concentration of GABA, GABA receptors and benzodiazepine receptors in lamina II of the dorsal horn of the human spinal cord and suggest a possible role for GABA in spinal sensory functions.
-
Electrical stimulus intensity, capsaicin, excitatory amino acid antagonists and the substance P antagonist, spantide, have been used to investigate the roles of primary afferent C fibres and excitatory amino acid receptors in the generation of long duration (half time 9.1 s +/- 1.1 S. E. M., N = 24) contralateral reflexes recorded in ventral roots of immature rat spinal cords in vitro. ⋯ The depressant effect of spantide, unlike that of (+/-)-2-amino-5-phosphonopentanoic acid, was associated with a long lasting excitatory action. In the presence of tetrodotoxin (0.1 microM), spantide (33 microM) failed to antagonize substance P-induced depolarizations. It is suggested that long duration of the dorsal root-evoked contralateral ventral root potential is a consequence of the activation of the N-methyl-D-aspartate receptor operated ion channels by excitatory amino acid transmitters.